• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

工程活动诱发的围岩结构变化对隧道突涌水的影响分析

黄震, 朱术云, 赵奎, 李晓昭, 吴锐, 王迎超, 王晓军

黄震, 朱术云, 赵奎, 李晓昭, 吴锐, 王迎超, 王晓军. 工程活动诱发的围岩结构变化对隧道突涌水的影响分析[J]. 岩土工程学报, 2018, 40(3): 449-458. DOI: 10.11779/CJGE201803008
引用本文: 黄震, 朱术云, 赵奎, 李晓昭, 吴锐, 王迎超, 王晓军. 工程活动诱发的围岩结构变化对隧道突涌水的影响分析[J]. 岩土工程学报, 2018, 40(3): 449-458. DOI: 10.11779/CJGE201803008
HUANG Zhen, ZHU Shu-yun, ZHAO Kui, LI Xiao-zhao, WU Rui, WANG Ying-chao, WANG Xiao-jun. Influences of structural variation of host rock induced by engineering activities on water inrush of tunnels[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 449-458. DOI: 10.11779/CJGE201803008
Citation: HUANG Zhen, ZHU Shu-yun, ZHAO Kui, LI Xiao-zhao, WU Rui, WANG Ying-chao, WANG Xiao-jun. Influences of structural variation of host rock induced by engineering activities on water inrush of tunnels[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 449-458. DOI: 10.11779/CJGE201803008

工程活动诱发的围岩结构变化对隧道突涌水的影响分析  English Version

基金项目: 国家重点基础研究发展计划(“973”计划)(2013CB036001); 国家自然科学基金项目(4170236,41572263); 博士后创新人才支持计划(BX201700113); 中国博士后科学基金项目(2017M620205); 中国矿业大学深部岩土力学与地下工程国家重点实验室开放基金项目(SKLGDUEK1703); 江西理工大学博士启动基金项目(jxxjbs17005)
详细信息
    作者简介:

    黄震(1989-),男,江西大余人,博士,讲师,主要从事工程地质和岩土工程方面的教学与研究工作。E-mail:huangzhen075@163.com。

    通讯作者:

    赵奎,E-mail:yglmf_zk@163.com

Influences of structural variation of host rock induced by engineering activities on water inrush of tunnels

  • 摘要: 随着深大交通、水利水电隧道(洞)的大量建设及地下矿产的不断延深开采,隧道突水灾害问题愈加严重。工程活动作为诱发突水的必要条件,其导致的围岩结构变化将对围岩力学、水力学性质及隧道附近渗流场产生重要影响。从工程扰动诱发的围岩损伤及其导致的渗透性演化入手,利用理论解析法研究了隧道围岩结构变化对涌水量及水压力分布的影响。结果表明:损伤区厚度对隧道涌水量和孔隙水压力分布具有较大影响,损伤区范围越大,发生突水的危险性越大;损伤区渗透系数对隧道涌水量的影响阈值约为2个数量级,之后其对涌水量的影响较弱;注浆圈厚度越大、渗透系数越低,隧道涌水量越小,但并不是注浆圈厚度越大、渗透性越低,涌水量的控制效果就越好,而是存在一个最优效果的设计值。
    Abstract: Water inrush disasters have become a serious problem resulting from the current trend that numerous traffic roads and hydropower tunnels are constructed, and minerals are mined in deep underground. The variation of rock structures induced by engineering activities has great influences on the mechanical and hydraulic properties of the host rock, and the seepage fields around tunnels. The theoretical analysis method is employed to investigate the influences of the structure variation of rock on the groundwater inflow rate and pore water distribution based on the damage and permeability evolutions of host rock induced by engineering disturbance. The results show that the influences of the thickness of the damage zone on the pore water distribution and the groundwater inflow rate are significant. The risk of water inrush increases with the increase of the thickness of the damage zone. The influences of the hydraulic conductivity on the pore water distribution and the groundwater inflow rate are weak if more than two orders of magnitude increase in hydraulic conductivity of damaged zone. The inflow rate decreases with the increase of the thickness of grouting circle and the decrease of its hydraulic conductivity. However, there is a best design value for the thickness and permeability of the grouting circle, rather than the effect of greater thickness and lower permeability of the grouting circle.
  • [1] READ R S.20 years of excavation response studies at AECL's Underground Research Laboratory[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1251-1275.
    [2] 吉小明. 隧道开挖的围岩损伤扰动带分析[J]. 岩石力学与工程学报, 2005, 24(10): 1697-1702.
    (JI Xiao-ming.Study on mechanical and hydraulic behavior of tunnel surrounding rock masses in excavation-disturbed zone[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(10): 1697-1702. (in Chinese))
    [3] 黄震, 姜振泉, 孙强, 等. 深部巷道底板岩体渗透性高压压水试验研究[J]. 岩土工程学报, 2014, 36(8): 1535-1543.
    (HUANG Zhen, JIANG Zhen-quan, SUN Qiang, et al.High-pressure water injection tests on permeability of deep rock mass under tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1535-1543. (in Chinese))
    [4] 贾善坡, 高敏, 龚俊, 等. 渗流-应力耦合作用下高孔低渗泥岩渗透特性演化模型[J]. 应用基础与工程科学学报, 2015, 23(6): 1221-1235.
    (JIA Shan-po, GAO Min, GONG Jun, et al.Permeability evolution model for clay stone with high porosity and low permeability in coupled hydro-mechanical condition[J]. Journal of Basic Science and Engineering, 2015, 23(6): 1221-1235. (in Chinese))
    [5] 李利平, 路为, 李术才, 等. 地下工程突水机理及其研究最新进展[J]. 山东大学学报(工学版), 2010, 40(3): 104-112.
    (LI Li-ping, LU Wei, LI Shu-cai, et al.Research status and developing trend analysis of the water inrush mechanism for underground engineering construction[J]. Journal of Shandong University (Engineering Science), 2010, 40(3): 104-112. (in Chinese))
    [6] KELSALL P C, CASE J B, CHABANNES C R.Evaluation of excavation-induced changes in rock permeability[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1984, 21(3): 123-135.
    [7] MARTINO J B, CHANDLER N A.Excavation-induced damage studies at the Underground Research Laboratory[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1413-1426.
    [8] BAECHLER S, LAVANCHY J M, ARMAND G, et al.Characterisation of the hydraulic properties within the EDZ around drifts at level -490m of the Meuse/Haute-Marne URL: a methodology for consistent interpretation of hydraulic tests[J]. Physics and Chemistry of the Earth Parts, 2011, 36: 1922-1931.
    [9] 姜振泉, 季梁军, 左如松, 等. 岩石在伺服条件下的渗透性与应变、应力的关联性特征[J]. 岩石力学与工程学报, 2002, 21(10): 1442-1446.
    (JIANG Zhen-quan, JI Liang-jun, ZUO Ru-song, et al.Correlativity among rock permeability and strain, stress under servo-control condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(10): 1442-1446. (in Chinese))
    [10] 孙强, 姜振泉, 朱术云. 北皂海域煤矿顶板软岩试样渗透性试验研究[J]. 岩土工程学报, 2012, 34(3): 540-545.
    (SUN Qiang, JIANG Zhen-quan, ZHU Shu-yun.Expermental study on permeability of soft rock of Beizao Coal Mine[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 540-545. (in Chinese))
    [11] 胡少华, 陈益峰, 周创兵. 北山花岗岩渗透特性试验研究与细观力学分析[J]. 岩石力学与工程学报, 2014, 33(11): 2200-2209.
    (HU Shao-hua, CHEN Yi-feng, ZHOU Chuang-bing.Laboratory test and mesomechanical analysis of permeability variation of Beishan Granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(11): 2200-2209. (in Chinese))
    [12] 韩国锋, 王恩志, 刘晓丽. 岩石损伤过程中的渗流特性[J]. 土木建筑与环境工程, 2011, 33(5): 41-50.
    (HAN Guo-feng, WANG En-zhi, LIU Xiao-li.Seepage characteristics of rock during damage process[J]. Journal of Civil Architectural & Environmental Engineering, 2011, 33(5): 41-50. (in Chinese))
    [13] 王伟, 郑志, 王如宾, 等. 不同应力路径下花岗片麻岩渗透特性的试验研究[J]. 岩石力学与工程学报, 2016, 35(2): 260-267.
    (WANG Wei, ZHENG Zhi, WANG Ru-bin, et al.Experimental study of permeability properties of granitic gneiss under different stress paths[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 260-267. (in Chinese))
    [14] 朱泽奇, 盛谦, 张勇慧, 等. 大岗山水电站地下厂房洞室群围岩开挖损伤区研究[J]. 岩石力学与工程学报, 2013, 32(4): 734-739.
    (ZHU Ze-qi, SHENG Qian, ZHANG Yong-hui, et al.Research on excavation damage zone of underground powerhouse of Dagangshan Hydropower Station[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(4): 734-739. (in Chinese))
    [15] WILEVEAU Y, BERNIER F.Similarities in the hydromechanical response of Callovo-Oxfordian clay and Boom clay during gallery excavation[J]. Physics and Chemistry of the Earth Parts, 2008, 33: S343-S349.
    [16] LI X.TIMODAZ: A successful international cooperation project to investigate the thermal impact on the EDZ around a radioactive waste disposal in clay host rocks[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2013, 5: 231-242.
    [17] BOSSART P, MAYOR J C, MEIER P M, et al.Geological and hydraulic characterisation of the excavation disturbed zone in the Opalinus clay of the Mont Terri Rock Laboratory[J]. Engineering Geology, 2002, 66: 19-38.
    [18] KAISER P K, MCCREATH D R, TANNANT D D.Canadian rockburst support handbook[M]. Sudbury: CAMIRO, 1996.
    [19] MARTIN C D, KAISER P K, MCCREATH D R.Hoek-Brown parameters for predicting the depth of brittle failure around tunnels[J]. Canadian Geotechnical Journal, 1999, 36(1): 136-151.
    [20] 蔡明, 赵星光, KAISER P K.论完整岩体的现场强度[J]. 岩石力学与工程学报, 2014, 33(1): 1-13.
    (CAI Ming, ZHAO Xing-guang, KAISER P K.On field strength of massive rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 1-13. (in Chinese))
    [21] PUSCH R.Alteration of the hydraulic conductivity of rock by tunnel excavation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1989, 26(1): 79-83.
    [22] SOULEY M, HOMAND F, PEPA S, et al.Damage-induced permeability changes in granite: a case example at the URL in Canada[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38: 297-310.
    [23] TSANG C F, BERNIER F, DAVIES C.Geohydromechanical processes in the excavation damaged zone in crystalline rock, rock salt, and indurated and plastic clays in the context of radioactive waste disposal[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(1): 109-125.
    [24] SHAO H, SCHUSTER K, SONNKE J, et al.EDZ development in indurated clay formations: in situ borehole measurements and coupled HM modelling[J]. Physics and Chemistry of the Earth, 2008, 33(S1): S388-S395.
    [25] LEVASSEUR S, CHARLIER R, FRIEG B, et al.Hydro-mechanical modelling of the excavation damaged zone around an underground excavation at Mont Terri Rock Laboratory[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3): 414-425.
    [26] 房倩, 张顶立, 黄明琦. 基于连续介质模型的海底隧道渗流问题分析[J]. 岩石力学与工程学报, 2007, 26(增刊2): 3776-3784.
    (FANG Qian, ZHANG Ding-li, HUANG Ming-qi.Analysis of seepage problem induced by subsea tunnel excavation based on continuum medium model[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 3776-3784. (in Chinese))
    [27] 王建秀, 朱合华, 叶为民. 隧道涌水量的预测及其工程应用[J]. 岩石力学与工程学报, 2004, 23(7): 1150-1153.
    (WANG Jian-xiu, ZHU He-hua, YE Wei-min.Forward and inverse analyses of water flow into tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(7): 1150-1153. (in Chinese))
    [28] 李术才, 赵岩, 徐帮树, 等. 海底隧道涌水量计算的渗透系数确定方法[J]. 岩土力学, 2012, 33(5): 1497-1505.
    (LI Shu-cai, ZHAO Yan, XU Bang-shu, et al.Study of determining permeability coefficient in water inrush numerical calculation of subsea tunnel[J]. Rock and Soil Mechanics, 2012, 33(5): 1497-1505. (in Chinese))
    [29] 杜朝伟. 海底隧道衬砌水压力及结构受力特征研究[D]. 北京: 北京交通大学, 2011.
    (DU Chao-wei.Research on water pressure on lining and the stress characteristics of lining structure of subsea tunnel[D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese))
    [30] 张有天. 岩石水力学与工程[M]. 北京: 中国水利水电出版社, 2005.
    (ZHANG You-tian.Rock hydraulics and engineering[M]. Beijing: China Water and Power Press, 2005. (in Chinese))
    [31] KOLYMBAS D, WAGNER P.Groundwater ingress to tunnels: the exact analytical solution[J]. Tunnelling and Underground Space Technology, 2007, 22(1): 23-27.
    [32] HARR M E.Groundwater and seepage[M]. New York: McGraw-Hill, 1962.
    [33] HEUER R.Estimating rock tunnel water inflow-II[C]// Proceeding of Rapid Excavation and Tunnelling Conference. Seattle, 2005.
    [34] FERNANDEZ G, MOON J.Excavation-induced hydraulic conductivity reduction around a tunnel: part 1 Guideline for estimate of ground water inflow rate[J]. Tunnelling and Underground Space Technology, 2010, 25: 560-566.
    [35] FERNANDEZ G, ALVAREZ T A.Seepage-induced effective stresses and water pressures around pressure tunnels[J]. Journal of Geotechnical Engineering, 1994, 120(1): 108-128.
    [36] 张成平, 张顶立, 王梦恕, 等. 高水压富水区隧道限排衬砌注浆圈合理参数研究[J]. 岩石力学与工程学报, 2007, 26(11): 2270-2276.
    (ZHANG Cheng-ping, ZHANG Ding-li, WANG Meng-shu, et al.Study on appropriate parameters of grouting circle for tunnels with limiting discharge ling in high water pressure and water-enriched region[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(11): 2270-2276. (in Chinese))
    [37] 李鹏飞, 张顶立, 赵勇, 等. 海底隧道复合衬砌水压力分布规律及合理注浆加固圈参数研究[J]. 岩石力学与工程学报, 2012, 31(2): 280-288.
    (LI Peng-fei, ZHANG Ding-li, ZHAO Yong, et al.Study on distribution law of water pressure acting on composite lining and reasonable parameters of grouting circle for subsea tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 280-288. (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-30
  • 发布日期:  2018-03-24

目录

    /

    返回文章
    返回