• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

平面SV波垂直入射下浅埋双圆隧道复合衬砌解析解及减震力学机理分析

高波, 王帅帅, 申玉生, 范凯祥

高波, 王帅帅, 申玉生, 范凯祥. 平面SV波垂直入射下浅埋双圆隧道复合衬砌解析解及减震力学机理分析[J]. 岩土工程学报, 2018, 40(2): 321-328. DOI: 10.11779/CJGE201802013
引用本文: 高波, 王帅帅, 申玉生, 范凯祥. 平面SV波垂直入射下浅埋双圆隧道复合衬砌解析解及减震力学机理分析[J]. 岩土工程学报, 2018, 40(2): 321-328. DOI: 10.11779/CJGE201802013
GAO Bo, WANG Shuai-shuai, SHEN Yu-sheng, FAN Kai-xiang. Dynamic stress concentration and damping mechanism of twin cylindrical composite-lined tunnels subjected to vertical incident plane SV waves[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 321-328. DOI: 10.11779/CJGE201802013
Citation: GAO Bo, WANG Shuai-shuai, SHEN Yu-sheng, FAN Kai-xiang. Dynamic stress concentration and damping mechanism of twin cylindrical composite-lined tunnels subjected to vertical incident plane SV waves[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 321-328. DOI: 10.11779/CJGE201802013

平面SV波垂直入射下浅埋双圆隧道复合衬砌解析解及减震力学机理分析  English Version

基金项目: 国家自然科学基金项目(51678501,51778540,51778539,51178398); 国家重点研发计划项目(2016YFB1200401)
详细信息
    作者简介:

    高 波(1957-),男,黑龙江鸡西人,博士,教授,博士生导师,主要从事隧道及地下工程研究。E-mail:progaobo@swjtu.edu.cn。

    通讯作者:

    王帅帅: E-mail:8366wangshuai@sina.com

  • 中图分类号: TU43

Dynamic stress concentration and damping mechanism of twin cylindrical composite-lined tunnels subjected to vertical incident plane SV waves

  • 摘要: 基于波函数展开法,给出了平面SV波入射下地下半空间弹性介质中圆形双洞复合式衬砌洞室动应力集中系数解析解,建立了小净距隧道减震层力学模型,并深入研究了低频SV波入射下洞室间距和减震层对衬砌动应力集中的影响。分析结果表明:洞室间距对衬砌的动应力有显著影响,随着洞室之间距离增大,左右洞室衬砌动应力集中系数降低;当洞室间距小于4倍洞室直径时,必须考虑双洞的相互影响;洞室中间部分围岩动应力集中系数较大;在围岩和衬砌间设置减震层,由于减震层刚度低,可以减小围岩对隧道的径向作用力,减震层可以降低衬砌动应力20%左右,但同时围岩切向动应力增大。
    Abstract: A series of solutions are presented for the dynamic stress concentration factor of the underground twin cylindrical tunnels with composite liners and buffer layers in a half elastic space subjected to vertically incident plane SV waves based on the Fourier-Bessel expansion method, and the mechanical model for the tunnels with small clear distance with soft layer is established. The influences of the factors such as the distance between the tunnels and the damping layer are investigated. It is shown that the distance between the tunnels plays an important role in the dynamic stress concentration factor of the composite-linned tunnels, and the dynamic stress of the liners decreases when the distance of the tunnels increases. The interaction of the two tunnels must be considered when the distance between the centers of the cavities is less than 4 times the diameter of the chamber. The dynamic stress concentration factor of the surrounding rock in the middle part between the tunnels is larger than that at the other parts. With the low shear modulus of the damping layer, the normal force between the wall rock and the liner is weakened, then the dynamic stress of the liners decreases by 20% with the buffer layers set between the surrounding rock and the liner, while the tangential dynamic stress of the surrounding rock increases.
  • [1] PAO Y H, MAO C C.The diffraction of elastic waves and dynamic stress concentrations[M]. New York: Crane, Russak & CompanyInc, 1972.
    [2] DAVIS C A, LEE V W, BARDET J.Transverse responseof underground cavities and pipes to incident SV waves[J]. Earthquake Engineering and Structural Dynamics, 2001, 30(3): 383-410.
    [3] LEE V W, T RIFUNAC M D. Response of tunnels to incident SH waves[J]. Journal of Engineering Mechanics, ASCE, 1979, 105: 643-659.
    [4] LE E V W, KARL J. Diffraction of SV waves by underground, circular, cylindrical cavities[J]. Soil Dynamics and Earthquake Engineering, 1992, 11: 445-456.
    [5] 纪晓东, 梁建文, 杨建江. 地下圆形衬砌洞室在平面P波和SV 波入射下动应力集中问题的级数解[J].天津大学学报, 2006, 39(5): 511-517.
    (JI Xiao-dong, LIANG Jian-wen, YANG Jian-jiang.Ondynamic stress concentration of an underground cylindricallined cavity subjected to incident plane P and SV waves[J]. Journal of Tianjin University, 2006, 39(5): 511-517. (in Chinese))
    [6] THAMBIRAJAH B, THAMBIRATNAM D P, CHAN G K, et al.Dynamic response of twin circular tunnels due to incident SH-wave[J]. Earthquake Eng Struct Dyn, 1984, 12: 181-201
    [7] 梁建文, 张浩, LEE V W.平面P波入射下地下洞室群动应力集中问题解析解[J]. 岩土工程学报, 2004, 26(6): 815-819.
    (LIANG Jian-wen, ZHANG Hao, LEE V W.An analytical solution for dynamic stress concentration of underground cavities under incident plane P waves[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(6): 815-819. (in Chinese))
    [8] 梁建文, 张浩, LEE V W.地下双洞室在SV波入射下动力响应问题解析解[J]. 振动工程学报, 2004, 17(2): 132-140.
    (LIANG Jian-wen, ZHANG Hao, LEE V W.An analytical solution for dynamic stress concentration of underground twin cavities due to incident SV waves[J]. Journal of Vibration Engineering, 2004, 17(2): 132-1401. (in Chinese))
    [9] 李宁. 半空间中圆形衬砌洞室群对平面P波和SV波的散射[D]. 天津: 天津大学, 2006.
    (LI Ning.Scattering an diffraction of cylindrical lined cavities in half-space subjected to P & SV waves[D]. Tianjin: Tianjin University, 2006. (in Chinese))
    [10] 王明年, 关宝树. 高烈度地震区地下结构减震原理研究[J].工程力学, 2000, 3(A03): 295-299.
    (WANG Ming-nian, GUAN Bao-shu.Study of the mechanism of shock absorption layer of underground structure in highly seismic zone[J]. Engineering Mechanics, 2000, 3(A03): 295-299. (in Chinese))
    [11] 钟启凯. 地下圆形组合衬砌洞室在地震波下的动力反应分析[D]. 长沙: 湖南大学, 2009.
    (ZHONG Qi-kai.Dynamic response analysis of underground cylindrical composite- lining cavern subjected to seismic waves[D]. Changsha: Hunan University, 2009. (in Chinese))
    [12] 王帅帅, 高波, 申玉生, 等. 平面SH 波入射下深埋软岩隧道抗减震机理研究[J]. 土木工程学报, 2014, 47(增刊1): 280-286.
    (WANG Shuai-shuai, GAO Bo, SHEN Yu-sheng, et al.Study on the mechanism of resistance and damping technology of deep soft rock tunnels subjectedto incident plane SH waves[J]. China Civil Engineering Journal, 2014, 47(S1): 280-286. (in Chinese))
    [13] 王帅帅, 高波, 隋传毅, 等. 减震层减震原理及跨断层隧道减震技术振动台试验研究[J]. 岩土工程学报, 2015, 37(6): 1086-1092.
    (WANG Shuai-shuai, GAO BO, SUI Chuan-yi, et al.Mechanism of shock absorption layer and shaking table tests on shaking absorption technology of tunnel across fault[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1086-1092. (in Chinese))
    [14] 王帅帅, 高波. 隧道设置减震层减震机制研究[J]. 岩石力学与工程学报, 2016, 35(3): 592-603.
    (WANG Shuai-shuai, GAO BO.Damping mechanism and shaking table test on mountaintunnel liners with buffer layers[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 592-603. (in Chinese))
    [15] 皇民. 浅埋双洞隧道地震动力响应研究[D]. 成都: 西南交通大学, 2009.
    (HUANG Min.Study on seismic dynamic response of shallow double-hole tunnels[D]. Chengdu: Southwest Jiaotong University, 2009. (in Chinese))
  • 期刊类型引用(3)

    1. 朱赛男,陈凯江,李伟华. 水下双层衬砌隧道对平面SV波散射问题的解. 西安建筑科技大学学报(自然科学版). 2023(02): 217-226 . 百度学术
    2. 王立新,范飞飞,汪珂,李储军,姚崇凯,甘露. 地铁车站不同减震层的减震机理及性能分析. 铁道标准设计. 2022(05): 131-139 . 百度学术
    13. 朱辉,严松宏,孙纬宇,欧尔峰,林峻岑,汪精河. 地震波斜入射下浅埋偏压双隧道地震响应分析. 振动.测试与诊断. 2024(02): 259-265+407 . 百度学术

    其他类型引用(13)

计量
  • 文章访问数:  366
  • HTML全文浏览量:  4
  • PDF下载量:  200
  • 被引次数: 16
出版历程
  • 收稿日期:  2016-03-20
  • 发布日期:  2018-02-24

目录

    /

    返回文章
    返回