• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

排水刚性桩单桩抗液化性能的振动台试验研究

杨耀辉, 陈育民, 刘汉龙, 李文闻, 江强

杨耀辉, 陈育民, 刘汉龙, 李文闻, 江强. 排水刚性桩单桩抗液化性能的振动台试验研究[J]. 岩土工程学报, 2018, 40(2): 287-295. DOI: 10.11779/CJGE201802009
引用本文: 杨耀辉, 陈育民, 刘汉龙, 李文闻, 江强. 排水刚性桩单桩抗液化性能的振动台试验研究[J]. 岩土工程学报, 2018, 40(2): 287-295. DOI: 10.11779/CJGE201802009
YANG Yao-hui, CHEN Yu-min, LIU Han-long, LI Wen-wen, JIANG Qiang. Shaking table tests on liquefaction resistance performance of single rigid-drainage pile[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 287-295. DOI: 10.11779/CJGE201802009
Citation: YANG Yao-hui, CHEN Yu-min, LIU Han-long, LI Wen-wen, JIANG Qiang. Shaking table tests on liquefaction resistance performance of single rigid-drainage pile[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 287-295. DOI: 10.11779/CJGE201802009

排水刚性桩单桩抗液化性能的振动台试验研究  English Version

基金项目: 国家自然科学基金面上项目(51379067,51679072); 国家自然科学基金重点国际(地区)合作研究项目(51420102013); 教育部创新团队发展计划项目(IRT_15R17)
详细信息
    作者简介:

    杨耀辉(1990-),男,山东安丘人,博士研究生,从事抗液化排水刚性桩相关研究。E-mail:yangyaohui1905@163.com。

    通讯作者:

    陈育民,E-mail:ymchenhhu@163.com

  • 中图分类号: TU473.1

Shaking table tests on liquefaction resistance performance of single rigid-drainage pile

  • 摘要: 排水刚性桩是一种将竖向排水体与刚性桩相结合的新型桩基。为研究抗液化排水刚性桩的单桩抗液化作用效果,采用振动台试验对排水刚性桩在动力荷载作用下的排水效果、地基孔压响应、加速度响应以及在上覆荷载作用下桩顶的侧向永久位移等动力响应进行了研究,并与不设排水体的普通桩作了对比。结果表明:抗液化排水刚性桩是一种有效的抗液化措施。在排水刚性桩桩身1倍桩径范围内,土体的喷砂冒水现象得到有效控制,普通桩试样中喷砂冒水现象严重。距离桩身排水通道0.5倍桩径处,排水桩超孔压比峰值约为普通桩超孔压比峰值的50%,排水桩可以更快地消散地基内的超孔压,超孔压比从峰值减小为0.7时,排水刚性桩用时6 s,普通桩用时17 s。排水刚性桩距排水体0.5倍桩径处加速度峰值为0.2g,相同测点处普通桩加速度峰值为0.09g,与排水桩相比,减少约100%。随加载过程的持续,排水桩桩顶震荡幅值基本不表现,在惯性力作用下,振动荷载初始时间段内(3 s时间内),桩身发生轻微震荡。普通桩桩顶水平震荡幅值为0.6 cm,且震荡时间持续整个加载过程中(10 s),普通桩桩顶的侧向永久位移约为排水桩的3倍。
    Abstract: The rigid-drainage pile is a new type of pile which combines vertical drainage and rigid pile. To investigate the liquefaction resistance, the drainage, response of excess pore water pressure, acceleration and lateral permanent displacement of pile head under upper loads are measured based on shaking table tests. The results are compared with those of ordinary pile tests. It is indicated that the rigid-drainage pile is an effective approach for mitigation of liquefaction. The phenomenon of sand boil is restrained effectively in the range of one time the pile diameter, while sand boil occurs significantly in ordinary pile tests. The peak of excess pore water pressure ratio of rigid-drainage pile tests is 50% of that of ordinary pile ones at a distance of 0.5 time the pile diameter, and the rigid-drainage pile can dissipate the excess pore water pressure more rapidly. It takes 6 s for the peak of excess pore water pressure ratios to decrease to 0.7 in the rigid-drainage pile tests, and in the ordinary pile tests it is 17 s. The peak of acceleration is 0.2g at a distance of 0.5 time the pile diameter, and it is only 0.09g in the ordinary pile tests at the same monitor point, which means that the peak of acceleration in ordinary pile tests is decreased by 100% approximately compared to that of rigid-drainage pile. With the continuation of loading process, the amplitude vibration of rigid-drainage pile head is tiny, and it only occurs in the initial moments (3 s). The peak lateral permanent displacement is 0.6 cm in the ordinary pile tests and the amplitude vibration continues to the end of shaking. The peak lateral permanent displacement is around
  • [1] 殷宗泽. 土工原理[M]. 北京: 中国水利水电出版社, 2007.
    (YIN Zeng-ze.The mechanism of geotechnic enginnering[M]. Beijing: China Water and Power Press, 2007. (in Chinese))
    [2] HAMADA M.Engineering for earthquake disaster mitigation[M]. Berlin: Springer, 2014.
    [3] MIWA S, IKEDA T, SATO T.Damage process of pile foundation in liquefied ground during strong ground motion[J]. Soil Dynamics and Earthquake Engineering, 2006, 26: 325-336.
    [4] TOWHATA I.Geotechnical earthquake engineering[M]. Berlin: Springer, 2008.
    [5] 郑刚, 龚晓楠, 谢永利, 等. 地基处理技术发展综述[J].土木工程学报, 2012, 45(2): 127-146.
    (ZHENG Gang, GONG Xiao-nan, XIE Yong-li, et al.State-of-the-art techniques for ground improvement in China[J]. China Civil Engineering Journal, 2012, 45(2): 127-146. (in Chinese))
    [6] SADREKARIMI A, GHALANDARZADEH A.Evaluation of gravel drains and compacted sand piles in mitigating liquefaction[J]. Ground Improvement, 2005, 9(3): 91-104.
    [7] SASAKI Y, TANIGUCHI E.Shaking table tests on gravel drains to prevent liquefaction of sand deposits[J]. Soils and Foundations, 1982, 22(3): 1-14.
    [8] MELOROSE J, PERROY R, CAREAS S.Stabilization of potentially liquefiable sand deposits using gravel drains[J]. ASCE, Journal of Geotechnical Engineering Division, 1977, 103(7): 757-768.
    [9] 刘汉龙. 一种抗液化排水刚性桩: 中国, CN2873886Y[P].2007-02-28. (LIU Han-long. A kind of rigid drainage pile of mitigation of liquefaction: China, CN2873886Y[P]. 2007-02-28.(in Chinese))
    [10] LIU H, CHEN Y M, ZHAO N.Development technology of rigidity-drain pile and numerical analysis of its anti- liquefaction characteristics[J]. Journal of Central South University of Technology, 2008, 15(S2): 101-107.
    [11] 赵楠. 刚性排水桩的抗液化性状试验与分析[D]. 南京:河海大学, 2008.
    (ZHAO Nan.Test and analysis on anti-liquefaction behaviors of rigidity-drain pile[D]. Nanjing: Hohai University, 2008. (in Chinese))
    [12] 刘汉龙, 陈育民, 赵楠. 刚性排水桩的技术开发与抗液化特性试验研究[C]// 第一届全国工程安全与防护学术会议. 南京, 2008: 531-535.
    (LIU Han-long, CHEN Yu-min, ZHAO Nan.Development technology of rigidity-drain pile and laboratory test of its anti-liquefaction characteristics[C]// 1st National Conference of Engineering and Safety Protection. Nanjing, 2008: 531-535. (in Chinese))
    [13] 陈育民, 刘汉龙, 赵楠.抗液化刚性排水桩振动台试验的数值模拟研究[J]. 土木工程学报, 2010, 43(12): 114-119.
    (CHEN Yu-min, LIU Han-long, ZHAO Nan.Laboratory test on anti-liquefaction characteristics of rigidity-drain pile[J]. China Civil Engineering Journal, 2010, 43(12): 114-119. (in Chinese))
    [14] 王翔鹰, 刘汉龙, 江强, 等. 抗液化排水刚性桩沉桩过程中的孔压响应[J]. 岩土工程学报, 2017, 39(4): 645-651.
    (WANG Xiang-ying, LIU Han-long, JIANG Qiang, et al.Field tests on the response of excess pore water pressures of the liquefaction resistance rigid-drainage pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 645-651. (in Chinese))
    [15] OTSUSHI K, KATO T, HARA T, et al.Analytical study on mitigation of liquefaction-related damage to flume channel using sheet-pile with drain[C]// GeoFlorida 2010: Advances in Analysis, Modeling & Design. Florida, 2010: 3062-3071.
    [16] MARINUCCI A.Effect of prefabricated vertical drains on pore pressure generation in liquefiable sand[D]. Austin: The University of Texas at Austria, 2010.
    [17] TANAKA H, KITA H, IIDA T.Countermeasure using steel sheet pile with drain capability[C]// Eleventh World Conference on Earthquake Engineering. Mexico City, 1996: 1052-1059.
    [18] RASOULI R, TOWHATA I, AKIMA T.Experimental evaluation of drainage pipes as a mitigation against liquefaction·induced settlement of structures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013: 1-10.
    [19] 吴永娟, 牛琪瑛, 闫卫泽. 短桩加固液化砂土时孔压比随桩距变化规律分析[J]. 太原理工大学学报, 2008, 39(6): 613-615.
    (WU Yong-juan, NIU Qi-ying, YAN Wei-ze.Analysis of the change of pore pressure ratio with the pile spacing in the liquefiable sand soil strengthened by short pile[J]. Journal of Taiyuan University of Technology, 2008, 39(6): 613-615. (in Chinese))
    [20] OKUR V, UMUT S.Energy approach to unsaturated cyclic strength of sand[J]. Bull Earthquake Enginerring, 2013(11): 503-519.
    [21] YANG J, SAVIDIS S, ROEMER M.Evaluating liquefaction strength of partially saturated sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(9): 975-979.
    [22] SHI T, CHENG S.Dynamic similitude law design of shaking table model test for high-rise steel structures[C]// 5th International Conference on Advances in Experimental Structural Engineering. 2013: 5-9.
    [23] SUSUMU I.Similitude for shaking table test on soil-structure-fluid model 1g gravitational field[R]. Yokosuka: The Port and Harbour Reasearch Institute, Ministry of Transport, 1988.
    [24] 詹永祥, 蒋关鲁, 牛国辉, 等. 桩板结构路基动力模型试验研究[J]. 岩土力学, 2008, 29(8): 2097-2102.
    (ZHAN Yong-xiang, JIANG Guan-lu, NIU Guo-hui, et al.Model experimental research on dynamic performance of pile-plank embankment[J]. Rock and Soil Mechanics, 2008, 29(8): 2097-2102. (in Chinese))
    [25] 凌贤长, 王臣, 王成. 液化场地桩-土-桥梁结构动力相互作用振动台试验模型相似设计方法[J]. 岩石力学与工程学报, 2004, 23(3): 450-456.
    (LING Xian-zhang, WANG Chen, WANG Zhi-qiang, et al.Study on large-scale shaking table proportional model test for free-ground liquefaction arisen from earthquake[J]. Earthquake Enginerring and Enginerring Vibration, 2003, 23(6):138-143.(in Chinese))
    [26] 宋二祥, 武思宇, 王宗纲. 地基-结构系统振动台模型试验中相似比的实现问题探讨[J]. 土木工程学报, 2008, 41(10): 87-92.
    (SONG Er-xiang, WU Si-yu, WANG Zong-gang.A tentative solution for similitude realization in shaking table test of SSI systems[J]. China Civil Enginerring Journal, 2008, 41(10): 87-92. (in Chinese))
    [27] ZEGHAI M, ELGAMAL A W, TANG H T, et al.Lotung downhole array Ⅱ: evaluation of soil nonlinear properties[J]. Journal of Geotechnical Engineering, 1995, 121(4): 363-378.
    [28] 王永志, WILSON D W, KHOSRAVI M, 等. 动力离心模型试验循环剪应力-剪应变反演方法对比[J]. 岩土工程学报, 2016, 38(2): 271-277.
    (WANG Yong-hi, WILSON D W, KHOSRAVI M, et al.Evaluation of cyclic shear stress-strain using inverse analysis techniques in dynamic centrifuge tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 271-277. (in Chinese))
    [29] 周燕国, 梁甜, 李永刚, 等. 含黏粒砂土场地液化离心机振动台试验研究[J]. 岩土工程学报, 2013, 35(9): 1650-1658.
    (ZHOU Yan-guo, LIANG Tian, LI Yong-gang, et al.Dynamic centrifuge tests on liquefaction of clayey sand ground[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1650-1658. (in Chinese))
  • 期刊类型引用(14)

    1. 刘小锐,张晗. 盾构隧道下穿施工对严重倾斜挡墙影响及加固措施分析. 粉煤灰综合利用. 2025(01): 145-149 . 百度学术
    2. 余鹏. 盾构隧道穿越在建PBA车站风险控制技术研究. 铁道标准设计. 2025(04): 148-156 . 百度学术
    3. 马昭,张明礼,段旭晗,赵博. 大断面浅埋隧道地表沉降Peck修正公式及其应用. 长江科学院院报. 2024(03): 118-125 . 百度学术
    4. 陈湘生,全昭熹,陈一凡,沈翔,苏栋. 极端环境隧道建造面临的主要问题及发展趋势. 隧道建设(中英文). 2024(03): 401-432 . 百度学术
    5. 张子新,李小昌,李佳宇. 软土地层盾构掘进土体稳定性模型试验研究. 土木与环境工程学报(中英文). 2024(03): 41-51 . 百度学术
    6. 刘彦良. 水下大直径盾构下穿施工对防汛大堤影响研究. 建筑机械. 2024(07): 142-146 . 百度学术
    7. 黄震,黄侦谦,侯东祥,尤伟军,管世玉. 盾构掘进对浅基础建筑物的扰动及影响分区研究. 科技通报. 2024(07): 97-106 . 百度学术
    8. 高泉平,杨硕,芮瑞,张泉,聂利文,孙天健. 邻近挡土结构隧道开挖引起地层变形的试验研究. 武汉理工大学学报. 2023(09): 75-82 . 百度学术
    9. 张恒旭. 某过江隧道江心洲防洪大堤开挖对周围环境的影响分析. 工程技术研究. 2022(09): 13-17 . 百度学术
    10. 王智德,武海港,杨文东,李杰,李根,刘奇. 地铁隧道近距离侧穿邻近桩基影响的试验研究. 武汉理工大学学报. 2022(06): 69-77 . 百度学术
    11. 王长虹,马铖涛,吴昭欣,王昆,汤道飞. CPTU数据校准黏土和砂土统一模型本构参数的随机力学-贝叶斯方法. 土木工程学报. 2022(10): 101-116 . 百度学术
    12. 董立波. 上软下硬复合地层中盾构下穿既有建筑物受力性能研究. 智能城市. 2021(04): 15-16 . 百度学术
    13. 芮瑞,翟玉新,徐杨青,何清. 邻近地层损失对地下挡土结构土压力与地表沉降影响试验研究. 岩土工程学报. 2021(04): 644-652 . 本站查看
    14. 魏勇,许强,王卓,李骅锦,李松林. 动态摄影测量在物理模型实验全过程地形数据获取中的应用. 地球科学进展. 2020(10): 1087-1098 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数:  392
  • HTML全文浏览量:  10
  • PDF下载量:  339
  • 被引次数: 25
出版历程
  • 收稿日期:  2016-11-22
  • 发布日期:  2018-02-24

目录

    /

    返回文章
    返回