• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂土各向异性与非共轴特性的本构模拟

陈洲泉, 黄茂松

陈洲泉, 黄茂松. 砂土各向异性与非共轴特性的本构模拟[J]. 岩土工程学报, 2018, 40(2): 243-251. DOI: 10.11779/CJGE201802004
引用本文: 陈洲泉, 黄茂松. 砂土各向异性与非共轴特性的本构模拟[J]. 岩土工程学报, 2018, 40(2): 243-251. DOI: 10.11779/CJGE201802004
CHEN Zhou-quan, HUANG Mao-song. Constitutive modeling of anisotropic and non-coaxial behaviors of sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 243-251. DOI: 10.11779/CJGE201802004
Citation: CHEN Zhou-quan, HUANG Mao-song. Constitutive modeling of anisotropic and non-coaxial behaviors of sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 243-251. DOI: 10.11779/CJGE201802004

砂土各向异性与非共轴特性的本构模拟  English Version

基金项目: 国家自然科学基金项目(11372228); 国家重点基础研究发展计划(“973”计划)课题(2012CB719803)
详细信息
    通讯作者:

    黄茂松,E-mail:mshuang@tongji.edu.cn

  • 中图分类号: TU441

Constitutive modeling of anisotropic and non-coaxial behaviors of sand

  • 摘要: 在考虑组构各向异性的砂土状态相关本构模型的基础上,引入了修正的非共轴流动法则建立了相应的非共轴本构模型。对于逆向加载的塑性问题,比如纯环剪加载,将通过引入边界面的概念进行处理。同时根据广义应力状态下的剪胀方程推导的塑性势面,建立了平面内的非关联共轴流动方向。另外,将非共轴流动方向定义为同当前应力状态主方向正交的方向,并同共轴流动方向一样与塑性加载因子相关联。对Toyoura砂的空心圆柱两种加载模式的剪切试验,即固定主应力轴方向的单调加载和纯环剪切,进行了模拟,结果表明本模型能较好地描述砂土力学行为中的各向异性和非共轴特性。
    Abstract: A non-coaxial constitutive model is proposed from the elasto-plastic constitutive model based on the state-dependent critical state model considering the fabric anisotropy of sand. The bounding surface plasticity is introduced to deal with the reversal loading condition, such as pure rotation shear tests. And a potential surface is derived from the multiaxial formulation of the dilatancy equation, indicating the non-associated coaxial flow direction in the plane. In addition, the non-coaxial flow direction is redefined as the orthogonal direction of the current principal stress and is affected by plastic loading index just as the coaxial flow direction. Two types of loading modes of hollow cylindrical shear tests oan Toyoura sand are simulated by the model, namely tests with fixed principal stress axes and those with rotation of the principal stress axes. In comparison with the experimental data, the simulated results can reflect the characteristics of anisotropic plasticity and the variation of the non-coaxial phenomenon reasonably.
  • [1] ROSCOE K H.The influence of strains in soil mechanics[J]. Géotechnique, 1970, 20(2):129-170.
    [2] ARTHUR J R F, MENZIES B K. Inherent anisotropy in a sand[J]. Géotechnique, 1972, 22(1):115-128.
    [3] ARTHUR J R F, CHUA K S, DUNSTAN T. Induced anisotropy in a sand[J]. Géotechnique, 1977, 27(1):13-30.
    [4] MIURA K, MIURA K, TOKI S.Deformation behavior of anisotropic dense sand under principal stress axes rotation[J]. Soils and Foundations, 1986, 26(1): 36-52.
    [5] GUTIERREZ M, ISHIHARA K, TOWHATA I.Flow theory for sand during rotation of principal stress direction[J]. Soils and Foundations, 1996, 31(4): 121-132.
    [6] RUDNICKI J W, RICE J R.Conditions for the localization of deformation in pressure-sensitive dilatant materials[J]. Journal of Mechanics and Physics of Solids, 1975, 23: 371-394.
    [7] 钱建固, 黄茂松. 复杂应力状态下岩土体的非共轴塑性流动理论[J]. 岩石力学与工程学报, 2006, 25(6): 1259-1264 (QIAN Jian-gu, HUANG Mao-song. Non-coaxial plastic flow theory in multi-dimensional stress state[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1259-1264. (in Chinese))
    [8] QIAN J G, YANG J, HUANG M S.Three-dimensional noncoaxial plasticity modeling of shear band formation in Geomaterials[J]. Journal of Engineering Mechanics, 2008, 134: 322-329.
    [9] YANG Y, YU H S.Numerical simulations of simple shear with non-coaxial soil models[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30: 1-19.
    [10] YANG Y, YU H S.A non-coaxial critical state soil model and its application to simple shear simulations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30: 1369-1390.
    [11] 扈萍, 黄茂松, 钱建固, 等. 砂土非共轴特性的本构模拟[J]. 岩土工程学报, 2009, 31(5):793-798 (HU Ping, Huang Mao-song, QIAN Jian-gu, et al. Non-coaxial plasticity constitutive modeling of sands[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 793-798. (in Chinese))
    [12] LI X S, DAFALIAS Y F.Constitutive modeling of inherently anisotropic sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128: 868-880.
    [13] ODA M, NAKAYAMA H.Introduction of inherent anisotropy of soil in the yield function[C]// Micromechanics of Granular Materials. Amsterdam, 1988: 81-89.
    [14] LI X S, DAFALIAS Y F.A constitutive framework for anisotropic sand including non-proportional loading[J]. Géotechnique, 2004, 54(1): 41-55
    [15] LASHKARI A, LATIFI M.A simple plasticity model for prediction of non-coaxial flow of sand[J]. Mechanics Research Communications 2007, 34(2): 191-200.
    [16] DAFALIAS Y F, PAPADIMITRIOU A G, LI X S.Sand plasticity model accounting for inherent fabric anisotropy[J]. Journal of Engineering Mechanics, 2004, 130: 1319-1333.
    [17] 陈洲泉, 黄茂松. 基于状态相关本构模型的砂土非共轴特性模拟[J]. 岩土力学, 2017, 38(7): 1959-1966.
    (CHEN Zhou-quan, HUANG Mao-song.Constitutive modeling of non-coaxial characteristics of sand based on state-dependent critical state model[J]. Rock and Soil Mechanics, 2017, 38(7): 1959-1966. (in Chinese))
    [18] PAPADIMITRIOU A G, BOUCKOVALAS G D.Plasticity model for sand under small and large cyclic strains: a multiaxial formulation[J]. Soil Dynamics and Earthquake Engineering, 2002, 22:194-204.
    [19] BEEN K, JEFFERIES M G.A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112.
    [20] LI X S, WANG Y.Linear representation of steady-state line for sand[J]. Journal of Geotechnical and Geo- environmental Engineering, 1988, 124(12): 1215-1217.
    [21] 黄茂松, 李学丰, 钱建固. 各向异性砂土的应变局部化分析[J].岩土工程学报, 2012,34(10): 1885-1892.
    (HUANG Mao-song, LI Xue-feng, QIAN Jian-gu.Strain localization of anisotropic sands[J]. Chinese Journal of Geotechnical Engineering, 2012,34(10): 1885-1892 (in Chinese))
    [22] YANG Z X, LI X S, YANG J.Quantifying and modeling fabric anisotropy of granular soils[J]. Géotechnique, 2008, 58(4): 237-248.
    [23] LI X S, DAFALIAS Y F.Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460.
    [24] WANG Z L, DAFALIAS Y F, SHEN C K.Bounding surface hypoplasticity model for sand[J]. Journal of Engineering Mechanics, 1990, 116(5): 983-1001.
    [25] DAFALIAS Y F.Bounding surface plasticity I: mathematical foundation and hypoplasticity[J]. Journal of Engineering Mechanics, 1986, 112(9): 966-987.
    [26] DAFALIAS Y F, POPOV E P.Cyclic loading for materials with a vanishing elastic region[J]. Nuclear Engineering Design, 1977, 41: 293-302.
    [27] PASTOR M, ZIENKIEWICZ O C, CHAN A H.Generalized plasticity and the modeling of soil behaviour[J]. International Journal for Numerical and Analytical Method in Geomechanics, 1990, 14: 151-190.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-16
  • 发布日期:  2018-02-24

目录

    /

    返回文章
    返回