• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

MICP胶结钙质砂动力特性试验研究

刘汉龙, 肖鹏, 肖杨, 王建平, 陈育民, 楚剑

刘汉龙, 肖鹏, 肖杨, 王建平, 陈育民, 楚剑. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45. DOI: 10.11779/CJGE201801002
引用本文: 刘汉龙, 肖鹏, 肖杨, 王建平, 陈育民, 楚剑. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45. DOI: 10.11779/CJGE201801002
LIU Han-long, XIAO Peng, XIAO Yang, WANG Jian-ping, CHEN Yu-min, CHU Jian. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. DOI: 10.11779/CJGE201801002
Citation: LIU Han-long, XIAO Peng, XIAO Yang, WANG Jian-ping, CHEN Yu-min, CHU Jian. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. DOI: 10.11779/CJGE201801002

MICP胶结钙质砂动力特性试验研究  English Version

基金项目: 国家自然科学基金项目(51578096); 高等学校学科创新引智计划项目(B13024)
详细信息
    作者简介:

    刘汉龙(1964-),男,博士,长江学者特聘教授,博士生导师,主要从事岩土工程方面的教学与科研。E-mail:hliuhhu@163.com。

  • 中图分类号: TU435

Dynamic behaviors of MICP-treated calcareous sand in cyclic tests

  • 摘要: 以南海某岛的钙质砂为材料进行微生物(MICP)胶结加固,通过动三轴试验和SEM微观结构试验,研究了MICP胶结钙质砂在不同胶结程度和不同动应力水平下的动强度、动变形、动孔压、有效应力路径的发展规律和MICP胶结的微观机理。结果表明:通过MICP胶结的钙质砂动剪应力比和抵抗变形的能力得到明显提高,这表明MICP胶结作用能显著改善钙质砂抗液化能力。MICP胶结钙质砂的孔压发展可以分为4个阶段:初始阶段—稳定发展阶段—快速发展阶段—完全液化阶段,当孔压发展到快速阶段末期,孔压曲线出现凹槽,试样开始失稳,最后发生破坏。整个振动循环过程中土体的变形和强度变化与有效应力路径和孔压的发展密切相关,当试样发生破坏时,有效应力路径表现出循环活动性。MICP胶结作用生成了方解石结晶包裹在砂土颗粒表面或填充于砂颗粒之间,这改变了土体的性质,使得土体的黏聚力和内摩擦角均有所提高。
    Abstract: The calcareous sands from an island of the South China Sea are cemented by the microbially induced calcite precipitation (MICP) method. A series of cyclic tests and SEM tests are carried out to investigate the evolutions of the dynamic strength, dynamic deformation, dynamic pore pressure and effective stress path under different degrees of bio-cement as well as the micromechanism of the MICP-treated calcareous sands. The results show that the cyclic stress ratio and resistance to deformation of the calcareous sands are obviously improved due to the MICP method, implying that the MICP method can significantly improve the dynamic properties of calcareous sands. The evolution of the dynamic pore pressure can be divided into four stages: initial phase, stable development phase, rapid development phase and complete liquid phase. The sample begins to collapse when the pore pressure is developed at the later period of the rapid development phase, and the groove appears in the pore pressure curve. In the whole phase, the soil deformation and the change in soil strength are closely related to the development trend of the effective stress path and dynamic pore pressure, and then, the effective stress path exhibits cyclic mobility. The particles of the MICP-improved calcareous sands are wrapped or filled by the calcite precipitation, leading to the changed properties of calcareous sands, which increases the cohesion and internal friction angle of soils.
  • [1] 刘崇权. 钙质土土力学理论及其工程应用[D]. 武汉: 中国科学院武汉岩土力学研究所, 1999.
    (LIU Chong-quan.The theory of calcareous soils mechanics and its application in engineering[D]. Wuhan: Institule of Rock and Soil Mechanics, Chinese Academy of Sciences, 1999. (in Chinese))
    [2] 刘崇权, 杨志强, 汪稔. 钙质土力学性质研究现状与进展[J]. 岩土力学, 1995, 16(4): 74-84.
    (LIU Chong-quan, YANG Zhi-qiang, WANG Ren.The present condition and development in studies of mechanical properties of calcareous soils[J]. Rock and Soil Mechanics, 1995, 16(4): 74-84. (in Chinese))
    [3] 刘汉龙, 胡鼎, 肖杨, 等. 钙质砂动力液化特性的试验研究[J]. 防灾减灾工程学报, 2015, 35(6): 707-711.
    (LIU Han-long, HU Ding, XIAO Yang, et al.Test study on dynamic liquefaction characteristics of calcareous sand[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(6): 707-711. (in Chinese))
    [4] 朱长歧, 陈海洋, 孟庆山, 等. 钙质砂颗粒内孔隙的结构特征分析[J]. 岩土力学, 2014, 33(7): 1831-1836.
    (ZHU Chang-qi, CHEN Hai-yang, MENG Qing-shan, et al.Microscopic characterization of intra-pore structures of calcareous sands[J]. Rock and Soil Mechanics, 2014, 33(7): 1831-1836. (in Chinese))
    [5] COOP M R, SORENSEN K K, FREITAS T B, et al.Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2002, 23(2): 166-169.
    [6] XIAO Y, LIU H L, XIAO P, et al.Fractal crushing of carbonate sands under impact loading[J]. Géotechnique Letters, 2016, 6(3): 1-6.
    [7] 秦月, 孟庆山, 汪稔, 等. 钙质砂地基单桩承载特性模型试验研究[J]. 岩土力学, 2015, 36(6): 1714-1720.
    (QIN Yue, MENG Qin-shan, WANG Ren, et al.A study on bearing characteristics of single pile in calcareous sand based on model experiment[J]. Rock and Soil Mechanics, 2015, 36(6): 1714-1720. (in Chinese))
    [8] 江浩, 汪稔, 吕颖慧, 等. 钙质砂中模型桩的试验研究[J]. 岩土力学, 2010, 31(3): 780-784.
    (JIANG Hao, WANG Ren, LÜ Ying-hui, et al.Test study of model pile in calcareous sands[J]. Rock and Soil Mechanics, 2010, 31(3): 780-784. (in Chinese))
    [9] CHU J, IVANOV V, NAEIMI M, et al.Optimization of calcium-based bioclogging and biocementation of sand[J]. Acta Geotechnica, 2014, 9(2): 277-285.
    [10] MONTOYA B M, DEJONG J T, BOULANGER R W.Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation[J]. Géotechnique, 2013, 63(4): 302-312.
    [11] 刘璐, 沈扬, 刘汉龙, 等. 微生物胶结在防治堤坝破坏中的应用研究[J]. 岩土力学, 2016, 37(12): 3410-3416.
    (LIU Lu, SHEN Yang, LIU Han-long, et al.Application of bio-cement for erosion control of levees[J]. Rock and Soil Mechanics, 2016, 37(12): 3410-3416. (in Chinese))
    [12] 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653.
    (HE Jia, CHU Jian, LIU Han-long, et al.Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese))
    [13] DEJONG J T, SOGA K, KAVAZANJIAN E, et al.Biogeochemical processes and geotechnical applications: progress, opportunities and challenges[J]. Géotechnique, 2013, 63(4): 287-301.
    [14] WHIFFIN V S, VAN PAASSEN L A, HARKES M P. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology, 2007, 24: 417-423.
    [15] IVANOV V, CHU J, STABNIKOV V, et al.Strengthening of soft marine clay using bioencapsulation[J]. Marine Georesources & Geotechnology, 2015, 33(4): 325-329.
    [16] VAN PAASSEN L A, GHOSE R, VAN DER L T J M, et al. Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1721-1728.
    [17] DEJONG J T, FRITZGES M B, NÜSSLEIN K. Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11): 1381-1392.
    [18] 程晓辉, 麻强, 杨钻, 等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486-1495.
    (CHENG Xiao-hui, MA Qiang, YANG Zhuan, et al.Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1486-1495. (in Chinese))
    [19] KHAN M, AMARAKOON G, SHIMAZAKI S, et al.Coral sand solidification test based on microbially induced carbonate precipitation using ureolytic bacteria[J]. Materials Transactions, 2015, 56(10): 1725-1732.
    [20] 方祥位, 申春妮, 楚剑, 等. 微生物沉积碳酸钙固化珊瑚砂的试验研究[J]. 岩土力学, 2015, 36(10): 2773-2779.
    (FANG Xiang-wei, SHEN Chun-ni, CHU Jian, et al.An experimental study of coral sand enhanced through microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 2015, 36(10): 2773-2779. (in Chinese))
    [21] SL237—032—1999 土工试验规程[S]. 1999. (SL 237—032—1999 Specification of soil test[S]. 1999. (in Chinese))
    [22] FENG K, MONTOYA B.M. Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(1): 1-9.
    [23] CHENG L, CORD-RUWISCH R, SHAHIN M A.Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation[J]. Canadian Geotechnical Journal, 2013, 50(1): 81-90.
  • 期刊类型引用(6)

    1. 王敬奎,乔丽苹,王菲,王者超,李崴. 海岛地下水封石油洞库海水入侵防控. 山东大学学报(工学版). 2025(02): 134-142 . 百度学术
    2. 乔丽苹,王菲,王者超,李成. 地下水封石油洞库竖直水幕设计参数及其影响分析. 岩土工程学报. 2024(07): 1525-1533 . 本站查看
    3. 魏松源,李涵硕,彭振华,王者超,李崴. 某地下水封洞库竖直水幕试验分析与水幕系统有效性. 隧道与地下工程灾害防治. 2024(04): 81-89 . 百度学术
    4. 曲建军,曹彪,宋大钊,杨连枝,何生全. 近海地下石油储备库海水入侵风险研究. 水文地质工程地质. 2023(06): 184-192 . 百度学术
    5. 蒋中明,钟兵,万发. 水封石油洞库污染物运移规律研究. 岩土工程学报. 2023(12): 2529-2536 . 本站查看
    6. 王秀英. 海滨地区水文环境变化及衍生灾害研究现状分析. 中国石油大学胜利学院学报. 2021(02): 24-28 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  1144
  • HTML全文浏览量:  91
  • PDF下载量:  707
  • 被引次数: 7
出版历程
  • 收稿日期:  2016-08-08
  • 发布日期:  2018-01-24

目录

    /

    返回文章
    返回