锯末混合土场地模型振动台试验研究

    陈红娟, 李小军, 闫维明, 陈适才, 张学明

    陈红娟, 李小军, 闫维明, 陈适才, 张学明. 锯末混合土场地模型振动台试验研究[J]. 岩土工程学报, 2017, 39(11): 2068-2077. DOI: 10.11779/CJGE201711015
    引用本文: 陈红娟, 李小军, 闫维明, 陈适才, 张学明. 锯末混合土场地模型振动台试验研究[J]. 岩土工程学报, 2017, 39(11): 2068-2077. DOI: 10.11779/CJGE201711015
    CHEN Hong-juan, LI Xiao-jun, YAN Wei-ming, CHEN Shi-cai, ZHANG Xue-ming. Shaking table tests on sawdust-mixed clay site[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2068-2077. DOI: 10.11779/CJGE201711015
    Citation: CHEN Hong-juan, LI Xiao-jun, YAN Wei-ming, CHEN Shi-cai, ZHANG Xue-ming. Shaking table tests on sawdust-mixed clay site[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2068-2077. DOI: 10.11779/CJGE201711015

    锯末混合土场地模型振动台试验研究  English Version

    基金项目: 北京市自然科学基金项目(8164067); 国家自然科学基金项目(51708519,51578514,51508526); 中国地震局地球物理研究所基本科研业务专项项目(DQJB15B10)
    详细信息
      作者简介:

      陈红娟(1982-),女,博士后,主要从事土动力学与地下结构抗震研究。E-mail:chenyu94@163.com。

      通讯作者:

      李小军,E-mail:beerli@vip.sina.com

    • 中图分类号: TU435

    Shaking table tests on sawdust-mixed clay site

    • 摘要: 在北京工业大学九子振动台台阵系统上开展了一系列锯末混合土场地模型试验,试验中模型箱采用装配式连续体刚性模型箱,其尺寸为7.7 m(长)×3.2 m(宽)×1.2 m(高),输入地震动时程采用El Centro地震动记录和天津地震动记录,地震动输入方向为水平横向和水平纵向。通过场地模型振动台试验,验证了设计的模型箱的较小的“边界效应”影响程度,同时考察了锯末混合土场地模型的动力特性及其变化规律。对部分试验结果,包括场地反应的地震动峰值加速度及其动力放大系数、加速度时程及其频谱,进行了具体分析。试验结果表明:本次使用的装配式连续体刚性模型箱边界效应处理效果良好,同一水平面上不同部位土体反应的加速度仅有较小差异;随着地震动输入强度的增大,同一测点反应的峰值加速度总体上在增大,但其加速度动力放大系数总体上呈现减小的趋势,反应的频谱组成从较高频率向较低频率移动。这些结果说明,随着地震动输入强度的增大,土体由于刚度发生变化而相对变软,土体模量逐渐降低。
      Abstract: A series of shaking table tests on a sawdust-mixed clay site model are conducted under uniform earthquake excitation using the shaking table testing system with 9 sub-tables in Beijing University of Technology. The tests are performed using a rigid prefabricated continuous model box with dimensions of 7.7 meters long, 3.2 meters wide and 1.2 meters high. The test system is subjected to strong ground motions from El Centro record and Tianjin record. Through the horizontal longitudinal and horizontal transverse free-field shaking table tests, the boundary effect of the model box is investigated, and its dynamic characteristics and variation laws are given. The partial test results are analyzed, including the peak ground accelerations and their amplification factors, acceleration time histories and their Fourier spectra for the site responses. The test results indicate that the boundary effect of the model box is small because there is only a slight difference in the accelerations of site responses at the same elevation. With the increase of intensity of the input ground motion, the peak ground acceleration of the site response at the same test point increases, but its acceleration amplification factor decreases, and the main frequency components move from high to low frequency. It means that the soil becomes softer and the soil modulus decreases gradually with the increase of the intensity of input ground motion.
    • [1] 刘晶波, 赵冬冬, 张小波, 等. 地基自由场离心机振动台模型试验研究[J]. 岩土工程学报, 2013, 35(5): 980-987. (LIU Jing-bo, ZHAO Dong-dong, ZHANG Xiao-bo, et al. Dynamic centrifuge model tests on an unconfined soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 980-987. (in Chinese))
      [2] MEYMAND P J. Shaking table scale model tests of nonlinear soil-pile-superstructure interaction in soft clay[D]. Berkeley: University of California, 1998.
      [3] 庄海洋. 土-地下结构非线性动力相互作用及其大型振动台试验研究[D]. 南京: 南京工业大学, 2006. (ZHUANG Hai-yang. Study on nonlinear dynamic soil-underground structure interaction and its large-size shaking table test[D]. Nanjing: Nanjing University of Technology, 2006. (in Chinese))
      [4] CHEN J, SHI X J, LI J. Shaking table test of utility tunnel under non-uniform earthquake wave excitation[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(11): 1400-1416.
      [5] CHEN G X, CHEN S, ZUO X, et al. Shaking-table tests and numerical simulations on a subway structure in soft soil[J]. Soil Dynamics and Earthquake Engineering, 2015, 76: 13-28.
      [6] 张强勇, 李术才, 郭小红, 等. 铁晶砂胶结新型岩土相似材料的研制及其应用[J]. 岩土力学, 2008, 29(8): 2126-2130. (ZHANG Qiang-yong, LI Shu-cai, GUO Xiao-hong, et al. Research and development of new typed cementitious geotechnical similar material for iron crystal sand and its application[J]. Rock and Soil Mechanics, 2008, 29(8): 2126-2130. (in Chinese))
      [7] SENETAKIS K, ANASTASIADIS A, PITILAKIS K. Dynamic properties of dry sand/rubber (SRM) and gravel/rubber (GRM) mixtures in a wide range of shearing strain amplitudes[J]. Soil Dynamics and Earthquake Engineering, 2012, 33: 38-53.
      [8] NAKHAEI A, MARANDI S M, SANI KERMANI S, et al. Dynamic properties of granular soils mixed with granulated rubber[J]. Soil Dynamics and Earthquake Engineering, 2012, 43: 124-132.
      [9] 尚守平, 刘方成, 卢华喜, 等. 振动台试验模型地基土的设计与试验研究[J]. 地震工程与工程振动, 2006, 26(4): 199-204. (SHANG Shou-ping, LIU Fang-cheng, LU Hua-xi, et al. Design and experimental study of a model soil used for shaking table test[J]. Earthquake Engineering and Engineering Dynamics, 2006, 26(4): 199-204. (in Chinese))
      [10] 徐炳伟. 大型复杂结构-桩-土振动台模型试验研究[D]. 天津: 天津大学, 2009. (XU Bing-wei. Shaking table test studying large-scale soil-pile-complex structure interaction[D]. Tianjin: Tianjin University, 2009. (in Chinese))
      [11] 陈红娟, 闫维明, 陈适才, 等. 小比例尺地下结构振动台试验模型土的设计与试验研究[J]. 地震工程与工程振动, 2015, 35(3): 59-66. (CHEN Hong-juan, YAN Wei-ming, CHEN Shi-cai, et al. Design and experimental research on model soil used for shaking table test of a small scale underground structure[J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(3): 59-66. (in Chinese))
      [12] TURAN A, HINCHBERGER S D, EL NAGGAR H. Design and commissioning of a laminar soil container for use on small shaking tables[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(2): 404-414.
      [13] 王永志, DANIEL W Wilson, MOHAMMAD Khosravi, 等. 动力离心模型试验循环剪应力-剪应变反演方法对比[J]. 岩土工程学报, 2016, 38(2): 271-277. (WANG Yong-zhi, Daniel W Wilson, Mohammad Khosravi, et al. Evaluation of cyclic shear stress-strain using inverse analysis techniques in dynamic centrifuge tests [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 271-277. (in Chinese))
      [14] KAGAWA T, SATO M, MINOWA C, et al. Centrifuge simulation of large-scale shaking table tests: case studies[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(7): 663-672.
      [15] HIROFUMI M. Seismic design of foundation and underground structure: new version [M]. Fukuoka: Kyushu University Publication, 2001.
      [16] 邹万杰, 瞿伟廉. 基于频响函数和遗传算法的结构损伤识别研究[J]. 振动与冲击, 2008, 27(12): 28-30. (ZOU Wan-jie, QU Wei-lian. Structural damage identification based on frequency response function and genetic algorithm[J]. Journal of Vibration and Shock, 2008, 27(12): 28-30. (in Chinese))
    计量
    • 文章访问数:  292
    • HTML全文浏览量:  8
    • PDF下载量:  183
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-09-04
    • 发布日期:  2017-11-24

    目录

      /

      返回文章
      返回