• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

桩承式路堤“土拱结构”形成演化规律离散元分析

付海平, 郑俊杰, 赖汉江

付海平, 郑俊杰, 赖汉江. 桩承式路堤“土拱结构”形成演化规律离散元分析[J]. 岩土工程学报, 2017, 39(11): 2050-2057. DOI: 10.11779/CJGE201711013
引用本文: 付海平, 郑俊杰, 赖汉江. 桩承式路堤“土拱结构”形成演化规律离散元分析[J]. 岩土工程学报, 2017, 39(11): 2050-2057. DOI: 10.11779/CJGE201711013
FU Hai-ping, ZHENG Jun-jie, LAI Han-jiang. Discrete element analysis of the development and evolution of “soil arching” within a piled embankment[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2050-2057. DOI: 10.11779/CJGE201711013
Citation: FU Hai-ping, ZHENG Jun-jie, LAI Han-jiang. Discrete element analysis of the development and evolution of “soil arching” within a piled embankment[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2050-2057. DOI: 10.11779/CJGE201711013

桩承式路堤“土拱结构”形成演化规律离散元分析  English Version

基金项目: 国家自然科学基金项目(51278216); 中国博士后科学基金项目(2016M600595)
详细信息
    作者简介:

    付海平(1992-),男,硕士研究生,主要从事软土地基处理理论研究。E-mail:fuhaiping@hust.edu.cn。

    通讯作者:

    郑俊杰,E-mail:zhengjj@hust.edu.cn

  • 中图分类号: TU473.1

Discrete element analysis of the development and evolution of “soil arching” within a piled embankment

  • 摘要: “土拱结构”作为桩承式路堤中的主要荷载传递媒介,对路堤荷载传递和路堤填料位移有显著影响。基于室内模型试验,采用颗粒流软件PFC2D建立桩承式路堤离散元(DEM)数值分析模型,基于应力主方向、接触力链及路堤填料沉降分布规律对路堤中“土拱结构”形态及其演化规律进行深入分析。研究结果表明:路堤中“土拱结构”随桩土相对位移的增加而逐渐发展并最终趋于稳定,最终的“土拱结构”形态呈0.8倍桩净间距高的抛物线形;路堤填筑高度对“土拱结构”形态、演化规律以及荷载传递效率有显著影响;路堤填料粗糙度、桩净间距及桩梁宽度对路堤荷载传递效率有显著影响,但对“土拱结构”最终形态几乎无影响。
    Abstract: “Soil arching”, as the major medium of load transfer for a piled embankment, has significant influences on the behaviors of load transfer and of embankment fill displacements. Based on the laboratory model tests, a series of numerical models by discrete element method (DEM) are established with the particle flow code PFC2D to investigate the features and evolution of “soil arching” by analyzing the distribution of principal stress direction, contact force chains and embankment fill settlements. The numerical results indicate that the “soil arching” develops gradually with the increase of pile-soil relative displacement and maintains a relatively stable state finally. Meanwhile the relatively stable “soil arching” is roughly parabola-shaped with a height of 0.8 times the clear spacing of cap beam. Additionally, the embankment height has significant influences on the features and evolution of “soil arching”, as well as the load-transfer efficacy. However, the roughness of embankment fill, the clear spacing of cap beam and the width of cap beam have significant influences on the load-transfer efficacy, but not on the “soil arching” features.
  • [1] BRIANCON L, SIMON B. Performance of pile-supported embankment over soft soil: full-scale experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(4): 551-561.
    [2] 郑俊杰, 曹文昭, 董同新, 等. 中低压缩性土地区桩承式加筋路堤现场试验研究[J]. 岩土工程学报, 2015, 37(9): 1549-1555. (ZHENG Jun-jie, CAO Wen-zhao, DONG Tong-xin, et al. Experimental investigation of geogrid- reinforced and pile-supported embankment on soils with medium-low compressibility[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1549-1555. (in Chinese))
    [3] MARSTON A, ANDERSON A O. The theory of loads on pipes in ditches and tests of cement and clay drain tile and sewer pipe[R]. Bulletin: IA Engineering Experimental Station, Iowa State College, Ames IA, 1913, 31.
    [4] TERZAGHI K. Stress distribution in dry and in saturated sand above a yielding trap-door[C]// Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering. Massachusetts, 1936: 307-311.
    [5] HEWLETT W J, RANDOLPH M F. Analysis of piled embankment[J]. Ground Engineering, 1988, 21(3): 12-18.
    [6] ZAESKE D, KEMPFERT H G. Calculation and behavior of unreinforced and reinforced bearing layer over point- or line-shaped bearing elements[J]. Bauingenieur, 2002, 77(2): 80-86.
    [7] CARLSSON B O. Reinforced soil, principals for calculation[M]. Sueitzrland: Terratema A B, 1987.
    [8] 俞 缙, 周亦涛, 鲍 胜, 等. 柔性桩承式加筋路堤桩土应力比分析[J]. 岩土工程学报, 2011, 33(5): 705-713. (YU Jin, ZHOU Yi-tao, BAO Sheng, et al. Pile-soil stress ratio of deformable pile-supported and geosynthetics-reinforced embankments[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 705-713. (in Chinese))
    [9] 陈福全, 李阿池. 桩承式加筋路堤的改进设计方法研究[J]. 岩土工程学报, 2007, 29(12): 1804-1808. (CHEN Fu-quan, LI A-chi. Improved design method of geosynthetic reinforced pile supported embankments on soft soils[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1804-1808. (in Chinese))
    [10] BS8006—1995 Code of practice for strengthened/reinforced soils and other fills[S]. London: British Standards Institution, 1995.
    [11] BS8006—2010 Code of practice for strengthened/reinforced soils and other fills[S]. London: British Standards Institution, 2010.
    [12] EBGEO—2010 Recommendations for design and analysis of earth structures using geosynthetic reinforcements[S]. Berlin: German Geotechnical Society, 2010. (in German)
    [13] IREX—2012 Recommendations for the design. Construction and control of rigid inclusion ground improvements[S]. Paris, ASIRI, 2012.
    [14] Manual on design and execution of reinforced soil method with use of geotextiles[S]. Tokyo: Public Work Refearch Center, 2000.
    [15] LAI Hai-jiang, ZHENG Jun-jie, ZHANG Jun, et al. DEM analysis of soil-arching within geogrid-reinforced and unreinforced pile-supported embankments[J]. Computers and Geotechnics, 2014, 61: 13-23.
  • 期刊类型引用(3)

    1. 范文晓. 南阳膨胀土浸水变形特性及微观结构研究. 建筑科学. 2025(01): 126-135 . 百度学术
    2. 李从安,许晓彤,沈登乐,王卫,胡波. 弱膨胀土三轴膨胀模型及其应用. 长江科学院院报. 2023(10): 137-141 . 百度学术
    3. 叶云雪,邹维列,韩仲,谢鹏,张俊峰,徐永福. 考虑初始状态影响的膨胀土一维膨胀特性研究. 岩土工程学报. 2021(08): 1518-1525 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 6
出版历程
  • 收稿日期:  2016-08-17
  • 发布日期:  2017-11-24

目录

    /

    返回文章
    返回