• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

黏性地层中深埋直墙拱形隧道的支护压力及稳定性

程小虎

程小虎. 黏性地层中深埋直墙拱形隧道的支护压力及稳定性[J]. 岩土工程学报, 2017, 39(11): 2034-2042. DOI: 10.11779/CJGE201711011
引用本文: 程小虎. 黏性地层中深埋直墙拱形隧道的支护压力及稳定性[J]. 岩土工程学报, 2017, 39(11): 2034-2042. DOI: 10.11779/CJGE201711011
CHENG Xiao-hu. Earth pressure and stability of deep arch tunnel with straight wall in cohesive strata[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2034-2042. DOI: 10.11779/CJGE201711011
Citation: CHENG Xiao-hu. Earth pressure and stability of deep arch tunnel with straight wall in cohesive strata[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2034-2042. DOI: 10.11779/CJGE201711011

黏性地层中深埋直墙拱形隧道的支护压力及稳定性  English Version

详细信息
    作者简介:

    程小虎(1980-),男,硕士,高级工程师,主要从事隧道及地下工程的设计与研究工作。E-mail:chengxiaohu2002@sina.com。

  • 中图分类号: TU432,U451.2

Earth pressure and stability of deep arch tunnel with straight wall in cohesive strata

  • 摘要: 在剪切破坏理论基础上采用极限分析法对黏性地层中深埋直墙拱形隧道展开研究。首先基于加载试验提出了破裂区的理论模型,考虑隧道侧面剪切楔形体的双滑裂面作用建立了侧压力表达式,得出侧压力及竖向支护压力的近似解,并提出了隧道侧压力与竖向土压力相互作用理论。根据剪切楔形体的稳定建立无支护深埋直墙拱形隧道的稳定性定量判别条件,得出极限承载力近似解。定义了基于极限分析法的稳定安全系数,并分析深埋隧道稳定性的影响因素。研究结果表明:本文提出的破裂区理论模型、极限承载力值与试验结果接近;基于双滑裂面作用的竖向支护压力、侧压力显著小于传统理论值;在良好地层中,拱形隧道极限状态下的竖向支护压力越小则侧压力越大,侧压力或侧压力系数越大则竖向支护压力越小;黏聚力是无支护的深埋直墙拱形隧道稳定的必要条件稳定安全系数随黏聚力、内摩擦角的增大而增大,随隧道跨度、高度的增大而减小;黏聚力对的影响比内摩擦角大,跨度对的影响比高度大,而埋深越大对深埋隧道稳定安全系数的影响越小。
    Abstract: The limit analysis method is adopted to study deep arch tunnel with straight wall in cohesive strata based on the shear failure theory. Firstly, a theoretical model for ruptured zone in the deep arch tunnel is established based on loading tests. And then a formula for lateral pressure is proposed considering the effect of two sphenoid rupture surfaces beside tunnel sidewalls. Secondly, the approximate solutions to the lateral pressure and the vertical earth pressure are derived. The criteria for the quantitative stability of the deep arch tunnel without supports are developed, and the approximate ultimate load on the ground can be calculated according to the stability of the shear wedge beside the tunnel sidewalls. Finally, the safety factor of the deep tunnel is defined based on the limit analysis method, and the influencing factors are analyzed. The results show that the proposed model for ruptured zone and the solution to the ultimate load are close to the test results. Compared with the traditional theoretical value, the calculated vertical and lateral earth pressure is much smaller according to the proposed formula. The interaction theory between lateral pressure and vertical pressure on arch tunnels is proposed in the good strata. The smaller the vertical earth pressure is, the greater the lateral pressure is, and the greater the lateral pressure or the lateral pressure coefficient is, the smaller the vertical earth pressure is in the limit state. The safety factor of stability increases with increasing the cohesive force and internal friction angle, and it decreases with increasing the span and height of the tunnel. The cohesive force and tunnel span have larger influences on the safety factor of stability than the internal friction angle and the tunnel height respectively. However, the greater buried depth has smaller influences on the stability safety factor of the deep tunnel.
  • [1] 郑颖人, 徐 浩, 王 成, 等. 隧道破坏机理及深浅埋分界标准[J]. 浙江大学学报(工学版), 2010, 44(10): 1852-1875. (ZHENG Ying-ren, XU Hao, WANG Cheng, et al. Failure mechanism of tunnel and dividing line standard between shallow and deep bury[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(10): 1851-1856. (in Chinese))
    [2] RABCEWICZ L V. The new austrian tunneling method (part Ⅰand partⅡ)[J]. Water Power, 1964, 17(1): 511-515.
    [3] RABCEWICZ L V. Stability of tunnels under rock load part 3[J]. Water Power, 1969, 21(8): 297-302.
    [4] RABCEWICZ L V, GOLSER J. Principles of dimensioning the support system for the “new austrian tunneling method”[J]. Water Power, 1973, 25(3): 88-93.
    [5] 顾金才. 均质材料中几种洞室的破坏形态[J]. 防护工程, 1979(2): 112-129. (GU Jin-cai. Study on the failure mode of several cavities in homogeneous materials[J]. Protection Engineering, 1979(2): 112-129. (in Chinese))
    [6] HEUER R E, HENDREN A J. 受静载岩石洞室的地质力学模型研究[M]. 顾金才, 译. 上海: 煤炭科学研究院, 1980. (HEUER R E, HENDREN A J. Geomechanical model study of the behavior of underground openings in rock subjected to static loads[M]. GU Jin-cai, Tran. Shanghai: China Coal Research Institute, 1980. (in Chinese))
    [7] 于学馥, 郑颖人, 刘怀恒, 等. 地下工程围岩稳定分析[M].北京: 煤炭工业出版社, 1983. (YU Xue-fu, ZHENG Ying-ren, LIU Huai-heng, et al. Stability analysis of surrounding rock of underground works[M]. Beijing: China Coal Industry Publishing House, 1983. (in Chinese))
    [8] 郑颖人, 朱合华, 方正昌, 等. 地下工程围岩稳定分析与设计理论[M]. 北京: 人民交通出版社, 2012. (ZHENG Ying-ren, ZHU He-hua, FANG Zheng-chang, et al. The Stability analysis and design theory of surrounding rock of underground engineering[M]. Beijing: China Communications Press, 2012. (in Chinese))
    [9] 李英杰, 张顶立, 宋义敏, 等. 软弱破碎深埋隧道围岩渐进性破坏试验研究[J]. 岩石力学与工程学报, 2012, 31(6): 1138-1147. (LI Ying-jie, ZHANG Ding-li, SONG Yi-min, et al. Experimental research of progressive damage of surrounding rock for soft fractured deep tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1138-1147. (in Chinese))
    [10] 郑颖人, 邱陈瑜, 张 红, 等.关于土体隧道围岩稳定性分析方法的探索[J]. 岩石力学与工程学报, 2008, 27(10): 1968-1979. (ZHENG Ying-ren, QIU Chen-yu, ZHANG Hong, et al. Exploration of stability analysis methods for surrounding rocks of soil tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(10): 1968-1979. (in Chinese))
    [11] 郭子红, 刘新荣, 舒志乐. 深埋隧道围岩滑移面验证及稳定性分析[J]. 中南大学学报(自然科学版), 2012, 43(1): 315-320. (GUO Zi-hong, LIU Xin-rong, SHU Zhi-le. Verification of deep tunnel rock mass sliding surface and stability analysis[J]. Journal of Central South University (Science and Technology), 2012, 43(1): 315-320. (in Chinese))
    [12] 苏永华, 刘少峰, 王凯旋, 等. 基于收敛-约束原理的地下结构稳定性分析[J]. 岩土工程学报, 2014, 36(11): 2002-2009. (SU Yong-hua, LIU Shao-feng, WANG Kai-xuan, et al. Stability analysis of underground structures based on convergence-confinement method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2002-2009. (in Chinese))
    [13] 程小虎, 庞振勇, 曾东洋, 等. 基于极限超载的无衬砌浅埋土质隧道稳定性研究[J]. 岩土力学, 2016, 37(3): 835-841. (CHENG Xiao-hu, PANG Zhen-yong, ZENG Dong-yang, et al. Theoretical research on the whole stability of unlined shallow earth tunnels based on ultimate overload[J]. Rock and Soil Mechanics, 2016, 37(3): 835-841. (in Chinese))
    [14] TERZAGHI K. Theoretical soil mechanics[M]. New York: John Wiley and Sons, 1943.
    [15] 程小虎. 密实砂土及硬黏土中圆形隧道的竖向支护压力[J]. 岩石力学与工程学报, 2014, 33(4): 857-864. (CHENG Xiao-hu. Earth pressure on circular tunnel lining in dense sand and hard clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(4): 857-864. (in Chinese))
    [16] 林培源. 隧道侧向压力问题的探讨[J]. 土木工程学报, 1982, 15(1): 54-62. (LIN Pei-yuan. On the lateral pressure of tunnel linings[J]. China Civil Engineering Journal, 1982, 15(1): 54-62. (in Chinese))
    [17] 工程地质手册编委会. 工程地质手册[M]. 4版. 北京: 中国建筑工业出版社, 2007. (Engineering Geology Manual Editorial Board. Engineering geology manual[M]. 4th ed. Beijing: China Architecture and Building Press, 2007. (in Chinese))
    [18] 刘学增, 叶 康. 山岭公路隧道围岩压力统计规律分析[J].岩土工程学报, 2011, 33(6): 890-895. (LIU Xue-zeng, YE Kang. Statistical analysis of surrounding rock pressure of mountain road tunnels[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 890-895. (in Chinese))
    [19] KOYAMA Y. Present status and technology of shield tunneling method in Japan[J]. Tunnelling and Underground Space Technology, 2003, 18(2): 145-159.
    [20] 林乐彬, 刘寒冰, 刘 辉. 隧道围岩压力的应力分析方法[J]. 土木工程学报, 2007, 40(8): 85-89. (LIN Le-bin, LIU Han-bing, LIU Hui. Stress analysis method for pressure of surrounding rocks on tunnels[J]. China Civil Engineering Journal, 2007, 40(8): 85-89. (in Chinese))
    [21] 程小虎. 改进的浅埋隧道松动围岩压力计算方法[J]. 铁道学报, 2014, 36(1): 100-106. (CHENG Xiao-hu. An improved method of calculating loosening pressure on shallow tunnel[J]. Journal of the China Railway Society, 2014, 36(1): 100-106. (in Chinese))
    [22] 程小虎. 土质隧道深浅埋分界的理论解析[J]. 地下空间与工程学报, 2012, 8(1): 37-42. (CHENG Xiao-hu. Theoretical solution for the dividing depth of deep tunnel and shallow tunnel in earth[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(1): 37-42. (in Chinese))
  • 期刊类型引用(7)

    1. 廖洁,刘斯宏,徐思远,樊科伟,于博文. 土工袋技术在乡村公路软基加固中的应用研究. 公路. 2024(06): 52-61 . 百度学术
    2. 李钒,林国兵,王雅华,樊科伟. 面板对土工袋挡土墙工作性状影响的足尺试验研究. 水电能源科学. 2023(06): 133-136 . 百度学术
    3. 关帅,孙嘉辉,刘越,王波,黄泽华. 纤维增强复合材料(FRP)锚索性能及其工程应用. 市政技术. 2023(08): 166-179 . 百度学术
    4. 曹旻昊. 淤泥质袋装土挡墙技术研究和应用分析. 现代交通技术. 2023(05): 93-96 . 百度学术
    5. 文华,杨青青,吴学宇,付文涛. 稳定固化土重力式挡土墙承载特性研究. 施工技术(中英文). 2022(20): 70-76 . 百度学术
    6. 黄英豪,吴敏,陈永,王硕,王文翀,武亚军. 絮凝技术在疏浚淤泥脱水处治中的研究进展. 水道港口. 2022(06): 802-812 . 百度学术
    7. 中国路基工程学术研究综述·2021. 中国公路学报. 2021(03): 1-49 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 12
出版历程
  • 收稿日期:  2016-01-28
  • 发布日期:  2017-11-24

目录

    /

    返回文章
    返回