• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于Trapdoor试验的双线隧道地表沉降预测公式探讨

徐路畅, 芮瑞, 张龙, 孙义, 夏元友

徐路畅, 芮瑞, 张龙, 孙义, 夏元友. 基于Trapdoor试验的双线隧道地表沉降预测公式探讨[J]. 岩土工程学报, 2017, 39(8): 1470-1476. DOI: 10.11779/CJGE201708014
引用本文: 徐路畅, 芮瑞, 张龙, 孙义, 夏元友. 基于Trapdoor试验的双线隧道地表沉降预测公式探讨[J]. 岩土工程学报, 2017, 39(8): 1470-1476. DOI: 10.11779/CJGE201708014
XU Lu-chang, RUI Rui, ZHANG Long, SUN Yi, XIA Yuan-you. Prediction formula for surface settlement in double-line tunnel based on trapdoor tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1470-1476. DOI: 10.11779/CJGE201708014
Citation: XU Lu-chang, RUI Rui, ZHANG Long, SUN Yi, XIA Yuan-you. Prediction formula for surface settlement in double-line tunnel based on trapdoor tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1470-1476. DOI: 10.11779/CJGE201708014

基于Trapdoor试验的双线隧道地表沉降预测公式探讨  English Version

基金项目: 国家自然科学基金项目(51208403); 武汉理工大学国家级大学生创新创业训练计划资助项目(20151049706038)
详细信息
    作者简介:

    徐路畅(1994- ),男,学士,主要从事岩土工程科研工作。E-mail: 549718504@qq.com。

    通讯作者:

    芮瑞,E-mail:ruigrate@126.com

Prediction formula for surface settlement in double-line tunnel based on trapdoor tests

  • 摘要: 城市隧道开挖引起的地层扰动不可避免。为了探讨双线隧道间相互影响以及可靠的地表沉降预测方法,利用课题组开发的多沉陷门(Multi-trapdoor)模型试验装置和钢棒相似土构建二维试验条件,通过沉陷门下沉模拟隧道开挖变形。先通过单Trapdoor试验获取表面沉降曲线,拟合得到单线隧道开挖地面沉降Peck公式参数。再进行双Trapdoor试验,利用单Trapdoor参数叠加得到双线隧道地表变形,并与双Trapdoor模型试验结果进行对比。结果反映,在埋深较大、隧道间距较小的情况下,沉降曲线较早的由双峰形态过渡到单峰形态,从而利用模型试验数据划分了两种形态的大致范围。引入了峰值修正系数和间距影响系数对叠加公式进行修正,建立了基于模型试验数据的双线隧道地表沉降叠加修正公式。
    Abstract: The disturbance caused by the excavation of urban tunnels is inevitable. In order to investigate the mutual influence of a double-line tunnel and the reliable method for prediction of ground surface subsidence, a multi-trapdoor model test setup and analogical soil are adopted to create the two-dimensional test conditions to simulate the tunnel excavation. The deformation caused by tunnel excavation is modeled by the trapdoors sinking. First of all, three single trapdoor model tests are conducted to obtain the fitting parameters of Peck's formula for a single-line tunnel. Then, the fitting parameters are substituted into the superposition formula to calculate the surface settlement which is compared to the measured curves of the double-trapdoor tests. The results reflect that in the case of large buried depth and small tunnel spacing, the surface settlement will turn out to be the single-peak form earlier, then the application conditions of the two forms are determined. For the single peak, a peak value correction factor and a spacing influence correction factor are introduced to correct the Peck’s formula, and then an equivalent prediction formula for the settlement of the double-line tunnel based on model test data is proposed.
  • [1] 殷跃平, 张作辰, 张开军. 我国地面沉降现状及防治对策研究[J]. 中国地质灾害与防治学报, 2005, 16(2): 1-8. (YIN Yue-ping, ZHANG Zuo-chen, ZHANG Kai-jun. Research on the current situation of land subsidence and its prevention and control measures in China[J]. Chinese Journal of Geological Hazard and Control, 2005, 16(2): 1-8. (in Chinese))
    [2] 魏 纲, 叶 琦, 虞兴福. 杭州地铁盾构隧道掘进对建筑物影响的实测分析[J]. 现代隧道技术, 2015, 52(3): 150-159. (WEI Gang, YE Qi, YU Xing-fu. Experimental analysis of the influence of shield tunneling on buildings in Hangzhou Metro[J]. Modern Tunnel Technology, 2015, 52(3): 150-159. (in Chinese))
    [3] PECK R B. Deep excavations and tunneling in soft ground[C]//Proceedings of the 7th International Conference of Soil Mechanics & Foundation Engineering. Mexico: Balkema A A, 1969: 225-290.
    [4] SUWANSAWAT S, EINSTEIN H H. Describing settlement troughs over twin tunnels using a superposition technique[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(4): 445-468.
    [5] WEI Gang. Prediction of soil settlement caused by double-line parallel shield tunnel construction[J]. Disaster Advances, 2013, 6(6): 23-27.
    [6] 魏新江, 魏 纲. 水平平行顶管引起的地面沉降计算方法研究[J]. 岩土力学, 2006, 27(7): 1129-1132. (WEI Xin-jiang, WEI Gang. Study of caculational method of ground settlement induced by level parallel pipe jacking[J]. Rock and Soil Mechanics, 2006, 27(7): 1129-1132. (in Chinese))
    [7] 吴华君, 魏 纲. 近距离双线平行盾构施工引起的土体沉降计算[J]. 现代隧道技术, 2014, 51(2): 63-69. (WU Hua-jun, WEI Gang. Calculation of soil settlement caused by the construction of double track double line tunnel[J]. Modern tunnel technology, 2014, 51(2): 63-69. (in Chinese))
    [8] CORDING E J, HANSMIRE. Displacements around soft ground tunnels[C]// General ReP. 5th Pan American Conference on Soil Mechanics and Foundation Engineering. Session IV. 1975: 517-632.
    [9] SUWANSAWAT S, EINSTEIN H H. Describing settlement troughs over twin tunnels using a superposition technique[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(4): 445-465.
    [10] 刘 波, 陶龙光, 丁城刚, 等. 地铁双隧道施工诱发地表沉降预测研究与应用[J]. 中国矿业大学学报, 2006, 35(3): 356-361. (LIU Bo, TAO Long-guang, DING Cheng-gang, et al. Prediction for ground subsidence induced by subway double tube tunneling[J]. Journal of China University of Mining & Technology, 2006, 35(3): 356-361. (in Chinese))
    [11] 魏 纲, 庞思远. 双线平行盾构隧道施工引起的三维土体变形研究[J]. 岩土力学, 2014(9): 2562-2568. (WEI Gang, PANG Si-yuan. Research on 3D soil deformation induced by double line tunnel construction[J]. Rock and Soil Mechanics, 2014(9): 2562-2568. (in Chinese))
    [12] 陈春来, 赵城丽, 魏 纲, 等. 基于Peck公式的双线盾构引起的土体沉降预测[J]. 岩土力学, 2014(8): 2212-2218. (CHEN Chun-lai, ZHAO Cheng-li, WEI Gang, et al. Prediction of soil settlement induced by double line tunnel based on Peck formula[J]. Rock and Soil Mechanics, 2014(8): 2212-2218. (in Chinese))
    [13] TERZAGHI K. Stress distribution in dry and in saturated sand above a yielding trap-door[C]// Proceedings of 1st ICSMFE. Cambridge, 1936: 35-39.
    [14] MEGUID M A, SAADA O, NUNES M A, et al. Physical modeling of tunnels in soft ground: a review[J]. Tunnelling and Underground Space Technology, 2008, 23(2): 185-198.
    [15] 邹广电, 陈永平. 抗滑桩的极限阻力及其整体设计[J]. 水利学报, 2003(6): 22-29. (ZOU Guang-dian, CHEN Yong-ping. The ultimate resistance of anti-slide pile and its integral design[J]. Journal of Hydraulic Engineering, 2003(6): 22-29. (in Chinese))
    [16] 杨 明, 姚令侃, 王广军. 桩间土拱效应离心模型试验及数值模拟研究[J]. 岩土力学, 2008, 29(3): 817-822. (YANG Ming, YAO Ling-kan, WANG Guang-jun. Centrifugal model test and numerical simulation study on soil arch effect between piles[J]. Rock and Soil Mechanics, 2008, 29(3): 817-822. (in Chinese))
    [17] COSTA Y D, ZOMBERG J G, BUENO B S, et al. Failure mechanisms in sand over a deep active trapdoor[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(11): 1741-1753.
    [18] O’REILLY M P, NEW B M. Settlements above tunnels in the United Kingdom-their magnitude and prediction[C]// Proc Tunneling 82. London, 1982: 173-181.
    [19] RUI R, VAN TOL A F, XIA Y Y, et al. Investigation of soil-arching development in dense sand by 2D model tests[J]. Geotechnical Testing Journal, 2016, 39(3): 415-430.
    [20] JENCK O, DIAS D, KASTNER R. Two-dimensional physical and numerical modeling of a pile-supported earth platform over soft soil[J]. Journal of Geotechnical and Geoenvironmental Engineering. 2007, 33(3): 118-129.
    [21] JENCK Orianne, DIAS Daniel, KASTNER Richard, et al. Soft ground improvement by vertical rigid piles two-dimensional physical modeling and comparison with current design methods[J]. Soil and Foundations, 2005, 6: 15-30.
    [22] CRC. Handbook of chemistry and physics[M]. Bock Raton: CRC Press, 2014.
    [23] 韩 煊, 李 宁, STANDING J R. Peck 公式在我国隧道施工地面变形预测中的适用性分析[J]. 岩土力学, 2007, 28(1): 23-35. (HAN Xuan, LI Ning, STANDING J R. An adaptability study of Gaussian equation applied to predicting ground settlements induced by tunneling in China[J]. Rock and Soil Mechanics, 2007, 28(1): 23-35. (in Chinese))
  • 期刊类型引用(16)

    1. 张志超,游志浪,许健,彭洋,GAGARIN L. 莫斯科—喀山高速铁路沿线大气冻融指数时空变化特征. 长沙理工大学学报(自然科学版). 2025(01): 15-27 . 百度学术
    2. 孔元元,梁晨涛,王智慧,谢柏涵,成忠焱. 考虑水盐运移的分散性盐渍土冻融破坏机制. 长安大学学报(自然科学版). 2024(02): 1-11 . 百度学术
    3. 包卫星,吴倩,吴谦,秦川,侯天琪. 冻融循环作用下伊犁盐渍化黄土力学特性. 岩石力学与工程学报. 2024(07): 1775-1787 . 百度学术
    4. 武立波,杨嘉伟,刘惠阳,陈宏信. 煤气化粗渣改良季节冻土区黄土填料的冻融特性及其微观机理研究. 冰川冻土. 2024(03): 930-943 . 百度学术
    5. 樊培培,张凌凯,丁旭升. 干湿-冻融循环条件下湿陷性黄土剪切及压缩特性的劣化规律. 岩土力学. 2024(07): 2050-2060 . 百度学术
    6. 包卫星,秦川,李伟,刘亚伦,陈锐. 冻融循环下低液限盐渍化粉土力学特性研究. 地下空间与工程学报. 2024(04): 1223-1235 . 百度学术
    7. 张卫兵,李晓,雷过,刘臻祥,周鑫磊. 冻融—干湿循环下硫酸盐渍土的微观孔隙研究. 地下空间与工程学报. 2023(02): 465-473 . 百度学术
    8. 王晓强,李明玉,高富强. 硫酸钠盐渍黄土物理力学特性演变规律及机理研究. 公路. 2023(06): 392-396 . 百度学术
    9. 孙杰龙,王弘起,李盛斌,李大卫,邱明明. 冻融作用下高填方黄土抗剪强度劣化特性分析. 岩土工程技术. 2023(05): 609-613 . 百度学术
    10. 王昊,韦金城,宋晓辉,李雪和,吴文娟,刘海峰,任瑞波. 黄泛区粉土工程特性及其改性固化研究进展. 粉煤灰综合利用. 2023(05): 107-119 . 百度学术
    11. 李品良,许强,刘佳良,何攀,纪续,陈婉琳,彭大雷. 盐分影响重塑黄土渗透性的微观机制试验研究. 岩土力学. 2023(S1): 504-512 . 百度学术
    12. 包卫星,李伟,毛雪松,陈锐,秦川,刘亚伦. 冻融循环条件下盐渍化风积沙力学特性. 交通运输工程学报. 2023(06): 114-124 . 百度学术
    13. 王亮亮,王照腾,方薇,田建胜. 气候边缘地带膨胀土强度特性随冻融循环劣化规律. 中南大学学报(自然科学版). 2022(01): 288-295 . 百度学术
    14. 张莎莎,刘亚超,杨晓华,陈伟志,金好乾. 粗粒盐渍土区既有高铁路基变形特性试验研究. 建筑科学与工程学报. 2022(02): 135-142 . 百度学术
    15. 刘华,胡鹏飞,王梦南,刘乃飞,胡文乐. 冻融循环对酸污染黄土抗拉特性劣化试验研究. 西安建筑科技大学学报(自然科学版). 2021(04): 493-501 . 百度学术
    16. 程卓,崔高航,高原昊,刚浩航,高泽宁,杨政,张鑫. 季冻区粉煤灰加固路基土力学性能试验研究. 硅酸盐通报. 2021(11): 3854-3864+3875 . 百度学术

    其他类型引用(20)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 36
出版历程
  • 收稿日期:  2016-04-10
  • 发布日期:  2017-08-24

目录

    /

    返回文章
    返回