• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于大型直剪试验的土石混合体颗粒破碎特征研究

刘新荣, 涂义亮, 王鹏, 钟祖良, 唐文斌, 杜立兵

刘新荣, 涂义亮, 王鹏, 钟祖良, 唐文斌, 杜立兵. 基于大型直剪试验的土石混合体颗粒破碎特征研究[J]. 岩土工程学报, 2017, 39(8): 1425-1434. DOI: 10.11779/CJGE201708009
引用本文: 刘新荣, 涂义亮, 王鹏, 钟祖良, 唐文斌, 杜立兵. 基于大型直剪试验的土石混合体颗粒破碎特征研究[J]. 岩土工程学报, 2017, 39(8): 1425-1434. DOI: 10.11779/CJGE201708009
LIU Xin-rong, TU Yi-liang, WANG Peng, ZHONG Zu-liang, TANG Wen-bin, DU Li-bing. Particle breakage of soil-rock aggregate based on large-scale direct shear tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1425-1434. DOI: 10.11779/CJGE201708009
Citation: LIU Xin-rong, TU Yi-liang, WANG Peng, ZHONG Zu-liang, TANG Wen-bin, DU Li-bing. Particle breakage of soil-rock aggregate based on large-scale direct shear tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1425-1434. DOI: 10.11779/CJGE201708009

基于大型直剪试验的土石混合体颗粒破碎特征研究  English Version

基金项目: 国家自然科学基金项目(41372356); 高等学校博士学科点专项科研基金项目(20110191120033); 中央高校基本科研业务费科研专项自然科学类项目(CDJZR12200012)
详细信息
    作者简介:

    刘新荣(1969- ),男,教授,博士生导师,主要从事土力学、地下工程等领域的教学与科研工作。E-mail:liuxrong@126.com。

Particle breakage of soil-rock aggregate based on large-scale direct shear tests

  • 摘要: 土石混合体剪切时存在细观上的颗粒破碎现象,并对其宏观力学性质产生影响。基于此,以4种含水率的土石混合体为研究对象,通过室内大型直剪试验和筛分试验,分析土石混合体剪切后的颗粒破碎特征,并建立细观颗粒破碎与宏观力学性质的联系,从而加深对宏观力学性质的认识。研究结果表明:土石混合体剪切后的颗粒破碎较明显,可分为完全剪断型、表面破裂型和表面研磨型3类;颗粒破碎细观上表现为粗粒组含量降低、细粒组含量增加、中等粒组含量波动变化,统计上表现为级配曲线上移,宏观上表现为低含水率出现应变软化破坏、高含水率出现应变硬化破坏、中等含水率出现塑性应变破坏、剪应力-剪切位移曲线“跳跃”和强度非线性特征,本质上是颗粒间接触力作用产生应力集中的结果;颗粒相对破碎率随着含水率的降低或法向压力的增大而增大;黏聚力和内摩擦角均随着含水率的增大而呈幂函数规律降低。
    Abstract: In the direct shear tests on soil-rock aggregate (SRA), particle breakage occurs in micro vision, which will influence its macro mechanical properties. On this basis, the laboratory large-scale direct shear tests and sieving analysis tests are conducted for SRA with four kinds of moisture contents. The particle breakage is analyzed based on the test results, and the connection between the micro particle breakage and the macro mechanical properties is established, which can eventually deepen engineers’ understanding of macro mechanical properties. The results show that: (1) The particle breakage appears to be obvious after shear tests, which can be divided into three types, i.e. complete-cut type, surface-ruptured type and surface-grinded type; (2) In micro vision, the particle breakage is characterized by decreasing coarse particles, increasing fine particles and fluctuation content of medium particles. In statistics, for the particle breakage, the grading curve is upward and in macro aspect, “jumping” occurs in the shear stress-shear displacement curves, the strength of SRA is of nonlinear characteristics, and the SRA with low, high and medium moisture contents exhibits strained softening, strained hardening and plastic-strain failure models. In fact, the particle breakage results from the stress concentration of particles by touching with each other; (3) Either the decrease of moisture content or the increase of normal pressure will cause the ratio of particles breakage to increase; (4) Both the cohesion and the internal friction angle decrease like power function with the increasing moisture content.
  • [1] 钟祖良, 涂义亮, 何晓勇, 等. 土石混合体物理指标及强度特性研究进展[J]. 地下空间与工程学报, 2016, 12(4): 952-961. (ZHONG Zu-liang, TU Yi-liang, HE Xiao-yong, et al. Research progress on physical index and strength characteristics of bimsoils[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(4): 952-961. (in Chinese))
    [2] 张坤勇. 土石混合料路基填筑关键技术[J]. 西部探矿工程, 2006, 18(B06): 409-411. (ZHANG Kun-yong. The key technology for filling subgrade using soil-rock aggregate[J]. West-China Exploration Engineering, 2006, 18(B06): 409-411. (in Chinese))
    [3] 李 晓, 廖秋林, 赫建明, 等. 土石混合体力学特性的原位试验研究[J]. 岩石力学与工程学报, 2007, 26(12): 2377-2384. (LI Xiao, LIAO Qiu-lin, HE Jian-ming, et al. Study on in-situ tests of mechanical characteristics on soil-rock aggregate[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12): 2377-2384. (in Chinese))
    [4] COLI N, BERRY P, BOLDINI D. In situ non-conventional shear tests for the mechanical characterization of a bimrock (BimTest)[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48: 95-102.
    [5] 舒志乐, 刘保县, 梁宁慧, 等. 基于数字图像处理的土石体粗料分形特性研究[J]. 地下空间与工程学报, 2012, 8(3): 511-516. (SHU Zhi-le, LIU Bao-xian, LIANG Ning-hui, et al. Study on the fractal characteristics of earth-rock coarse grain based on digital image processing[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(3): 511-516. (in Chinese))
    [6] 舒志乐, 刘新荣, 刘保县. 基于分形理论的土石混合体强度特征研究[J]. 岩石力学与工程学报, 2009, 28(增刊1): 2652-2656. (SHU Zhi-le, LIU Xin-rong, LIU Bao-xian. Study of strength properties of earth-rock aggregate based on fractals[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S1): 2652-2656. (in Chinese))
    [7] 徐文杰, 胡瑞林, 岳中琦. 基于数字图像分析及大型直剪试验的土石混合体块石含量与抗剪强度关系研究[J]. 岩石力学与工程学报, 2008, 27(5): 996-1007. (XU Wen-jie, HU Rui-lin, YUE Zhong-qi. Research on relationship between rock block proportion and shear strength of soil-rock mixtures based on digital image analysis and large direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 996-1007. (in Chinese))
    [8] 田恒蛟, 薛亚东. 路用土石混合料的剪切特性试验研究[J].地下空间与工程学报, 2010, 10(1): 30-35. (TIAN Heng-jiao, XUE Ya-dong. Experimental search on shear behavior of soil-rock mixture for road construction[J]. Chinese Journal of Underground Space and Engineering, 2010, 10(1): 30-35. (in Chinese))
    [9] KALENDER A, SONMEZ H, MEDLEY E. An approach to predicting the overall strengths of unwelded bimrock sand bimsoils[J]. Engineering Geology, 2014, 183: 65-79.
    [10] 魏厚振, 汪 稔, 胡明鉴, 等. 蒋家沟砾石土不同粗粒含量直剪强度特征[J]. 岩土力学, 2008, 29(1): 48-57. (WEI Hou-zhen, WANG Ren, HU Ming-jian, et al. Strength behaviour of gravelly soil with different coarse-grained contents in Jiangjiagou Ravine[J]. Rock and Soil Mechanics, 2008, 29(1): 48-57. (in Chinese))
    [11] 李维树, 丁秀丽, 邬爱清, 等. 蓄水对三峡库区土石混合体直剪强度参数的弱化程度研究[J]. 岩土力学, 2007, 28(7): 1338-1342. (LI Wei-shu, DING Xiu-li, WU Ai-qing, et al. Shear strength degeneration of soil and rock mixture in Three Gorges Reservoir bank slopes under influence of impounding[J]. Rock and Soil Mechanics, 2007, 28(7): 1338-1342. (in Chinese))
    [12] 邓华锋, 原先凡, 李建林, 等. 土石混合体直剪试验的破坏特征及抗剪强度取值方法研究[J]. 岩石力学与工程学报, 2013, 32(增刊2): 4065-4072. (DENG Hua-feng, YUAN Xian-fan, LI Jian-lin, et al. Research on failure characteristics and determination method for shear strength of soil-rock aggregate in direct shear tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 4065-4072. (in Chinese))
    [13] 徐文杰, 胡瑞林, 曾如意. 水下土石混合体的原位大型水平推剪试验研究[J]. 岩土工程学报, 2006, 28(7): 814-818. (XU Wen-jie, HU Rui-lin, ZENG Ru-yi. Research on horizontal push-shear in-situ test of subwater soil-rock mixture[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 814-818. (in Chinese))
    [14] XU W J, HU R L, TAN R J. Some geomechanical properties of soil-rock mixtures in Tiger-leaping Gorge Area, China[J]. Géotechnique, 2007, 57(3): 255-264.
    [15] 王江营, 曹文贵, 张 超. 基于正交设计的复杂环境下土石混填体大型直剪试验研究[J]. 岩土工程学报, 2013, 35(10): 1849-1856. (WANG Jiang-ying, CAO Wen-gui, ZHANG Chao. Large-scale direct shear tests on soil-rock aggregate mixture under complicated environment based on orthogonal design[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1849-1856. (in Chinese))
    [16] LADE P V. Assessment of test data for selection of 3-D failure criterion for sand[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30: 307-333.
    [17] SL237—1999 土工试验规程[S]. 1999. (SL237—1999 Specification of soil test[S]. 1999. (in Chinese))
    [18] HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, ASCE, 1985, 111(10): 1177-1192.
    [19] 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004. (LI Guang-xin. Advanced soil mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese))
    [20] 张坤勇, 殷宗泽, 朱俊高. 堆石坝坝坡非线性稳定性分析[J]. 西部探矿工程, 2006, 18(21): 212-215. (ZHANG Kun-yong, YING Zong-ze, ZHU Jun-gao. Analysis of nonlinear stability of slope in Rock-fill dam[J]. West-China Exploration Engineering, 2006, 18(21): 212-215. (in Chinese))
    [21] 陈生水. 土石坝试验新技术研究与应用[J]. 岩土工程学报, 2015, 37(1): 1-28. (CHEN Sheng-shui. Experimental techniques for earth and rockfill dams and their applications[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 1-28. (in Chinese))
  • 期刊类型引用(11)

    1. 蔺云宏,郝云龙,李明宇,田帅,常瑞成,刘新新. 基坑开挖引起下卧地铁盾构隧道变形的统计与预测方法研究. 河南科学. 2025(03): 337-346 . 百度学术
    2. 张毅. 软弱地层下的基坑支护方案比选. 山西建筑. 2024(17): 97-100 . 百度学术
    3. 王伟,邓松峰. 深厚软土区邻近地铁深基坑工程关键技术研究. 江苏建筑. 2024(05): 120-126 . 百度学术
    4. 刘朝阳,蒋凯,梁禹. 基于Kerr地基模型的覆土荷载引起既有装配式地铁车站沉降分析. 现代隧道技术. 2024(05): 71-78 . 百度学术
    5. 贺旭. 软弱地层基坑开挖支护方案比选研究. 铁道建筑技术. 2023(05): 100-104+125 . 百度学术
    6. 张继新. 浅埋扩挖隧道变形处理技术分析. 交通世界. 2023(15): 138-140 . 百度学术
    7. 邓彬,张磊,郑鹏鹏,陈保国,邹顺清. 深基坑开挖与内支撑调节对邻近沉井影响规律试验研究. 建筑科学与工程学报. 2023(05): 174-182 . 百度学术
    8. 马少俊,王乔坎,苏凤阳,徐建章,郑伟,陈思源. 邻地铁盾构隧道超长基坑支护技术——以杭州大会展中心基坑工程为例. 建筑科学. 2022(05): 179-186 . 百度学术
    9. 王丽萍. 水平间距对涉水隧道土体变形影响的模拟分析. 黑龙江水利科技. 2022(08): 74-76+108 . 百度学术
    10. 冯文刚. 涉水隧道开挖对土体沉降影响分析. 黑龙江水利科技. 2022(08): 89-92 . 百度学术
    11. 祖华. 城市地铁隧道开挖及变形控制的数值模拟研究. 山西建筑. 2022(21): 135-137 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 13
出版历程
  • 收稿日期:  2016-05-22
  • 发布日期:  2017-08-24

目录

    /

    返回文章
    返回