泥炭质土层盾构施工扰动引起隧道长期沉降的研究

    王志良, 瞿嘉安, 申林方, 徐则民, 丁祖德

    王志良, 瞿嘉安, 申林方, 徐则民, 丁祖德. 泥炭质土层盾构施工扰动引起隧道长期沉降的研究[J]. 岩土工程学报, 2017, 39(8): 1416-1424. DOI: 10.11779/CJGE201708008
    引用本文: 王志良, 瞿嘉安, 申林方, 徐则民, 丁祖德. 泥炭质土层盾构施工扰动引起隧道长期沉降的研究[J]. 岩土工程学报, 2017, 39(8): 1416-1424. DOI: 10.11779/CJGE201708008
    WANG Zhi-liang, QU Jia-an, SHEN Lin-fang, XU Ze-min, DING Zu-de. Long-term settlement of tunnel caused by shield tunneling in peaty soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1416-1424. DOI: 10.11779/CJGE201708008
    Citation: WANG Zhi-liang, QU Jia-an, SHEN Lin-fang, XU Ze-min, DING Zu-de. Long-term settlement of tunnel caused by shield tunneling in peaty soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1416-1424. DOI: 10.11779/CJGE201708008

    泥炭质土层盾构施工扰动引起隧道长期沉降的研究  English Version

    基金项目: 国家自然科学基金项目(51408284,U1502231,51508253)
    详细信息
      作者简介:

      王志良(1982- ),男,副教授,硕士生导师,主要从事隧道及地下建筑工程方面的教学和科研。E-mail: wangzhiliangtj@126.com。

    Long-term settlement of tunnel caused by shield tunneling in peaty soil

    • 摘要: 为了研究泥炭质土层盾构施工扰动引起隧道的长期沉降问题,将隧道周围土体视为连续、均质、各向同性的饱和黏弹性介质,采用五元件模型描述泥炭质土的流变特性,耦合Terzaghi-Rendulic二维固结理论,建立了隧道衬砌在完全不透水的情况下,盾构施工扰动引起周围土体超孔隙水压力消散的控制方程。采用分离变量法、保角映射、Laplace变换及逆变换等数学方法对该控制方程进行求解,得到了隧道周围土体超孔隙水压力消散的解析解,最后对土体的竖向应变进行积分获得了隧道长期沉降的计算公式。结合一工程算例分析了昆明泥炭质土层超孔隙水压力消散及隧道长期沉降的变化规律,研究结果表明:与上海软黏土相比,在初始阶段泥炭质土层中超孔隙水压力的消散速度较快,然后迅速变缓并趋于稳定。泥炭质土层中隧道的长期沉降持续时间更长且沉降量更大,在900 d的时间内隧道沉降趋于稳定,其累积沉降量约高达150 mm。此外,昆明泥炭质土的流变特性显著,如将土体中超孔隙水压力消散90%作为主固结沉降的完成时刻,则土体次固结沉降约占隧道总沉降量的36%,是隧道长期沉降中不可忽视的一个重要组成部分。
      Abstract: In order to study the long-term settlement of tunnel caused by shield tunneling in peaty soil, the surrounding soil of tunnel is regarded as continuum, homogeneous and isotropic saturated viscoelastic medium. The rheological properties of peaty soil are described a five-component model. Based on the Terzaghi-Rendulic theory of two-dimensional consolidation, the governing equation for dissipation of the excess pore water pressure are established when the lining is impermeable. The equations are solved using the mathematical methods of separating variables, conformal mapping, Laplace transform and inverse transform, and the analytical solution of the dissipation of excess pore water pressure is obtained. Finally, the vertical strain of soil is integrated to get the formula for long-term settlement of tunnel. The variation laws of the disspation of excess pore water pressure and long-term settlement of tunnel in peaty soil are analyzed through an example. The results show that in the initial stage, the dissipating speed of the excess pore water pressure is faster than that in soft clay in Shanghai, and then it becomes slow and steady. The lasting time of long-term settlement is longer and the settlement amount is larger in the peaty soil. The tunnel settlement tends to be stable in 900 days, and the cumulative settlement is almost up to 150 mm. In addition, the rheological properties of peaty soil in Kunming are significant; if the excess pore water pressure is dissipated by 90% as the completion time of the primary consolidation settlement, the secondary consolidation settlement accounting for about 36% of the total settlement of tunnel is an important part of the long-term settlement of tunnel.
    • [1] SHEN Shui-long, WU Huai-na, CUI Yu-jun, et al. Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai[J].Tunnelling and Underground Space Technology, 2014, 40(3): 309-323.
      [2] NG C W W, LIU Guo-bin, LI Qing. Investigation of the long-term tunnel settlement mechanism of the first metro line in Shanghai[J].Canadian Geotechnical Journal, 2013, 50(6): 674-684.
      [3] 刘建航, 侯学渊. 盾构法隧道[M]. 北京: 中国铁道出版社,1991. (LIU Jian-hang, HOU Xue-yuan. Shield tunnel[M]. Beijing: China Railway Publishing House, 1991. (in Chinese))
      [4] 蒋忠信. 滇池泥炭土[M]. 成都: 西南交通大学出版社, 1994. (JIANG Zhong-xin. Dianchi peaty soil[M]. Chengdu: Southwest Jiaotong University Press, 1994. (in Chinese))
      [5] 阮永芬, 刘岳东, 王 东, 等. 昆明泥炭土与泥炭质土对建筑地基的影响[J]. 昆明理工大学学报(理工版), 2003, 28(3): 121-124. (RUAN Yong-fen, LIU Yue-dong, WANG Dong, et al. Effect of Kunming’s peat & peaty soil on the building foundation[J]. Journal of Kunming University of Science and Technology (Science and Technology) , 2003, 28(3): 121-124. (in Chinese))
      [6] 熊恩来, 阮永芬, 刘文连, 等. 云南泥炭土力学特征实验及归一化性状研究[J]. 云南水力发电, 2005, 21(2): 39-41. (XIONG En-lai, RUAN Yong-fen, LIU Wen-lian, et al. Mechanical testing of Yunnan’s peat soil and study of its generalized behavior[J]. Yunnan Water Power, 2005, 21(2): 39-41. (in Chinese))
      [7] 桂 跃, 余志华, 刘海明, 等. 高原湖相泥炭土次固结特征及机理分析[J]. 岩土工程学报, 2015, 37(8): 1390-1398. (GUI Yue, YU Zhi-hua, LIU Hai-ming, et al. Secondary consolidation properties and mechanism of plateau lacustrine peaty soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1390-1398. (in Chinese))
      [8] 吕俊青. 昆明盆地泥炭土流变特性与本构模型研究[D]. 昆明: 昆明理工大学, 2011. (LÜ Jun-qing. Study of rheological characteristics and constitutive model of peaty soil in Kunming Basin[D]. Kunming: Kunming University of Science and Technology, 2011. (in Chinese))
      [9] LEE K M, JI H W, SHEN C K, et al. Ground response to the construction of Shanghai Metro tunnel-line 2[J]. Soils and Foundation, 1999, 39(3): 113-134.
      [10] 张忠苗, 林存刚, 吴世明, 等. 泥水盾构施工引起的地面固结沉降实例研究[J]. 浙江大学学报(工学版), 2012, 46(3): 431-440. (ZHANG Zhong-miao, LIN Cun-gang, WU Shi-ming, et at. Case study of ground surface consolidation settlements induced by slurry shield tunnelling[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(3): 431-440. (in Chinese))
      [11] WONGSAROJ J, SOGA K, MAIR R J. Modeling of long-term ground response to tunneling under St James’s Park, London[J]. Géotechnique, 2007, 57(1): 75-90.
      [12] SHIN J H, ADDENBROOKE T I, POTTS D M.A numerical study of the effect of groundwater movement on long-term tunnel behaviour[J]. Géotechnique, 2002, 52(6): 391-403.
      [13] 杨 敏, 黄 炬, 孙 庆, 等. 黏土中隧道开挖引起的地表及地表以下土体长期沉降计算方法[J]. 岩土工程学报, 2012, 34(2): 217-221. (YANG Min, HUANG Ju, SUN Qing, et al. Computation method for long-term surface and subsurface settlements induced by excavation of tunnels in clays[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 217-221. (in Chinese))
      [14] 詹美礼, 钱家欢. 黏弹性地基中洞周土体固结问题的解析解[J]. 河海大学学报, 1993, 21(2): 54-60. (ZHEN Mei-li, QIAN Jia-huan. Theoretical analysis for consolidation of viscoelastic clay about circular tunnels in foundations[J]. Journal of Hohai University, 1993, 21(2): 54-60. (in Chinese))
      [15] 张冬梅, 黄宏伟, 王箭明. 软土隧道地表长期沉降的黏弹性流变与固结耦合分析[J]. 岩石力学与工程学报, 2003, 22(增刊1): 2359-2362. (ZHANG Dong-mei, HUANG Hong-wei, WANG Jian-ming. Analysis of long-term settlements over tunnels using visco-elastic constitutive model coupled with consolidation theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S1): 2359-2362. (in Chinese))
      [16] 包鹤立. 衬砌局部渗漏条件下软土盾构隧道的长期性态研究[D]. 上海: 同济大学, 2008. (BAO He-li. Research on the long-term behavior of shield tunnel with partially sealed linings in soft soil[D]. Shanghai: Tongji University, 2008. (in Chinese))
      [17] 童 磊. 软土浅埋隧道变形、渗流及固结性状研究[D]. 杭州: 浙江大学, 2010. (TONG Lei. Studies on land subsidence, seepage field and consolidation behavior of soft soil around a shallow circular tunnel[D]. Hangzhou: Zhejiang University, 2010. (in Chinese))
      [18] 刘晨晖, 杨 敏, 孙 庆, 等. 圆形盾构隧道开挖引起的黏土长期沉降理论解[J]. 同济大学学报(自然科学版), 2015, 43(7): 1000-1007. (LIU Chen-hui, YANG Min, SUN Qing, et al. Theoretical solutions for shield tunneling induced long-term settlement in clays[J]. Journal of Tongji University (Natural Science), 2015, 43(7): 1000-1007. (in Chinese))
      [19] 傅作新. 工程徐变力学[M]. 北京: 水利电力出版社, 1985. (FU Zuo-xin. Engineering creep mechanics[M]. Beijing: Water Conservancy and Electric Power Press, 1985. (in Chinese))
    • 期刊类型引用(21)

      1. 魏永杰,陈伟利. 纤维增强水泥土搅拌桩芯样的强度特征与本构模型. 水电能源科学. 2024(04): 103-106 . 百度学术
      2. 朱彬,裴华富,杨庆,卢萌盟,王涛. 基于随机有限元法的波致海床响应概率分析. 岩土力学. 2023(05): 1545-1556 . 百度学术
      3. 周文辉,肖宁,占辉,贺佐跃. 广州南沙某桥头路基处理方案对比及其工后沉降分析. 科技和产业. 2022(03): 370-376 . 百度学术
      4. 陈利宏,杜军,唐灵敏,熊勃,姚嘉敏. 不同养护龄期下水泥掺入比对水泥土直剪特性的影响. 广东土木与建筑. 2022(05): 35-39 . 百度学术
      5. 于晓夫. 公路施工质量控制与软土地基处理技术. 工程技术研究. 2022(10): 158-160 . 百度学术
      6. 王涛,马骏,周国庆,许大晴,季雨坤. 冻土地层三维空间变异性表征及冻结帷幕温度特征值演化过程研究. 岩石力学与工程学报. 2022(10): 2094-2108 . 百度学术
      7. 黄毫春,昌郑,吴春鹏,姚嘉敏,熊勃,刘飞禹. 纤维长度与掺量对加筋水泥土直剪特性的影响研究. 施工技术(中英文). 2022(21): 54-59 . 百度学术
      8. 马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 . 本站查看
      9. 郑永胜,田盎然,尹鹏,范韬,刘浩宇,居俊,唐强. 复杂环境下超宽深大基坑设计与施工技术分析——以X352县道改扩建工程项目为例. 盐城工学院学报(自然科学版). 2021(01): 60-65 . 百度学术
      10. 周禹暄,胡俊,林小淇,李珂,王志鑫. X型与圆形冻结管单管冻结温度场数值对比分析. 海南大学学报(自然科学版). 2021(02): 198-203 . 百度学术
      11. 张新建,唐昌意,刘智. 淤泥水泥土室内配合比试验及成桩效果分析. 公路. 2021(06): 81-84 . 百度学术
      12. 秦堃. 深厚软土地基联合加固技术模型试验研究. 粉煤灰综合利用. 2021(04): 35-39 . 百度学术
      13. 张卫中,闫少峰,黄学军,何进江,康钦容. 有机粉质粘土灌注桩孔壁垮塌机理及控制研究. 武汉理工大学学报. 2021(05): 80-84+91 . 百度学术
      14. 刘海桃,徐志豪,邵朝阳. 有机质对水泥改良红黏土的力学特性影响及微观机理分析. 土工基础. 2021(05): 645-648 . 百度学术
      15. 周文辉,肖宁,贺佐跃. 广州南沙某路基桩帽下脱空机理分析. 河南科学. 2021(11): 1783-1789 . 百度学术
      16. 马子鹏. 临江富水环境大型过江通道基坑降水施工关键技术研究. 居舍. 2020(29): 63-66+72 . 百度学术
      17. 吴雨薇,胡俊,王志鑫,曾东灵,汪树成. 水下清淤人工冻结板温度场数值分析. 煤田地质与勘探. 2019(02): 168-176 . 百度学术
      18. 黄磊,刘文博,吴雨薇,陈璐,胡俊. 南宁地铁东滨区间联络通道冻结法加固施工监测分析研究. 森林工程. 2019(06): 77-85 . 百度学术
      19. 吴雨薇,刘文博,胡俊,王志鑫,曾东灵. 基于温度场分析的新型水下清淤装置数值研究. 水利水电技术. 2019(11): 103-109 . 百度学术
      20. 胡俊,张皖湘,汪磊,刘文博,王志鑫. 防护网与液氮冻土墙复合基坑支护技术研究. 海南大学学报(自然科学版). 2019(04): 359-367 . 百度学术
      21. 郑俊杰,乔雅晴,章荣军. 被动加固区参数变异性对软土深基坑变形行为的影响. 土木与环境工程学报(中英文). 2019(06): 1-8 . 百度学术

      其他类型引用(8)

    计量
    • 文章访问数:  387
    • HTML全文浏览量:  10
    • PDF下载量:  265
    • 被引次数: 29
    出版历程
    • 收稿日期:  2016-04-28
    • 发布日期:  2017-08-24

    目录

      /

      返回文章
      返回