Gradation design method for rockfill materials based on fractal theory
-
摘要: 根据分形理论,推导了堆石料级配的分形分布公式。利用6座心墙坝和5座200 m级面板坝工程的现场级配检测资料进行验证,相关系数基本在0.95以上,吻合较好;相对于不均匀系数Cu和曲率系数Cc指标,粒度分形维数可以更客观地反映堆石料填筑级配平均特性;对英安岩、凝灰岩和混合岩等不同母岩特性的缩尺堆石料进行了室内干密度试验研究,同时结合水布垭等4座大坝原级配堆石料的检测资料,研究了级配(粒度分形维数)与压实干密度的关系,认为级配是影响堆石料压实性能的主要因素;利用粗粒土级配的Cu,Cc与分形维数的关系,首次提出了堆石料、过渡料等大粒径筑坝材料的良好级配范围,其粒度分形维数在2.22~2.63之间。研究结论可为堆石料的级配设计与优化提供依据。Abstract: According to the fractal theory, the fractal distribution formula of gradation for rockfill materials is deduced. The field gradation data of six dams with clay core and five 200 m-high CFRDs are used to verify the relevant achievements. The result shows that the correlation coefficient is basically above 0.95. Compared to the uneven coefficient Cu and curvature coefficient Cc, the particle fractal dimension can objectively reflect the average characteristics of rockfill gradation. The relationship between gradation (particle fractal dimension) and density is studied by conducting the extreme dry density tests on scaled rockfill materials of different source rocks from dacite, tuff and migmatite. In combination with the field gradation rockfill data of four dams, including Shuibuya Dam, the conclusion is drawn that the gradation is considered as the main factor affecting the compaction properties of rockfill. By means of the relationship among Cu, Cc and the particle fractal dimension, the favorable gradation scope is deduced for the coarse-grained materials such as the rockfill and transition materials, providing the basis for the gradation design and optimization of rockfill materials.
-
Keywords:
- rockfill dam /
- gradation /
- particle fractal dimension /
- dry density
-
[1] TYLER S W, WHEAT C S W. Fractal scaling of soil particle size distribution: Analysis and limitations[J].Soil Science Society of America Journal, 1992, 56: 362-369. [2] 谢和平. 分形几何及其在岩土力学中的应用[J]. 岩土工程学报, 1992, 14(1): 14-24. (XIE He-ping. Fractal geometry and its application rock and soil materia[J]. ChineseJournal of Geotechnical Engineering, 1992, 14(1): 14-24. (in Chinese)) [3] 朱 晟, 王永明, 翁厚洋. 粗粒筑坝材料密实度的缩尺效应研究[J]. 岩石力学与工程学报, 2011, 30(2): 348-357. (ZHU Sheng, WANG Yong-ming, WONG Hou-xiang. Study of scale effect of density of coarse-grained dam materials[J]. ChineseJournal of Rock Mechanics and Engineering, 2011, 30(2): 348-357. (in Chinese)) [4] DLT 5395—2007碾压式土石坝设计规范[S]. (DLT 5395—2007 Resign specification for rolled earth-rock fill dams[S]. 2007. (in Chinese)) [5] DLT5016—2011混凝土面板堆石坝设计规范[S]. 2011. (DLT5016—2011 Resign specification for concrete face rockfill dams[S]. (in Chinese)) [6] GB—T 50145—2007土的工程分类标准[S]. (GB—T 50145—2007 Standard for engineering classification of soil[S]. (in Chinese)) [7] MANDELBROT B B. The fractal geometry of nature[M]. New York: WH Freeman and Company, 1982. [8] 孙 霞, 吴自勤, 黄田匀. 分形原理及应用[M]. 合肥: 中国科学技术大学出版社, 2003. (SUN Xia, WUZi-qin, HUANG Tian-yun. Fractal theory and applied[M]. Hefei: University of Science and Technology of China Press, 2003. (in Chinese)) [9] 朱 晟, 冯燕明, 冯树荣. 基于分形理论的爆破堆石料颗粒级配的优化方法: 中国, ZL201110125311.7[P]. 2011-12-14. (ZHU Sheng, FENG Yan-ming, FENG Shu-rong. Optimization method of particle size distribution of blasting rockfill based on fractal theory: China, ZL201110125311.7[P]. 2011-12-14. (in Chinese)) -
期刊类型引用(3)
1. 支斌,李树忱,朱颖,田垚,万泽恩. 土压平衡盾构螺旋输送机渣土运移及参数影响. 应用力学学报. 2023(01): 107-115 . 百度学术
2. 莫品强,任志文,林玉祥,褚锋,顾瑞海. 基于孔压静探的滨海相软土抗剪强度解译方法研究. 地下空间与工程学报. 2023(S1): 112-123 . 百度学术
3. 王钰轲,冯爽,钟燕辉,张蓓. 基于集成学习模型的正常固结土抗剪强度指标预测方法. 岩土工程学报. 2023(S2): 183-188 . 本站查看
其他类型引用(7)
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量:
- 被引次数: 10