• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

橡胶-砂颗粒混合物强度特性及微观机制试验研究

张涛, 蔡国军, 刘松玉, 段伟宏, 王鹏程

张涛, 蔡国军, 刘松玉, 段伟宏, 王鹏程. 橡胶-砂颗粒混合物强度特性及微观机制试验研究[J]. 岩土工程学报, 2017, 39(6): 1082-1088. DOI: 10.11779/CJGE201706014
引用本文: 张涛, 蔡国军, 刘松玉, 段伟宏, 王鹏程. 橡胶-砂颗粒混合物强度特性及微观机制试验研究[J]. 岩土工程学报, 2017, 39(6): 1082-1088. DOI: 10.11779/CJGE201706014
ZHANG Tao, CAI Guo-jun, LIU Song-yu, DUAN Wei-hong, WANG Peng-cheng. Experimental study on strength characteristics and micromechanism of rubber-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1082-1088. DOI: 10.11779/CJGE201706014
Citation: ZHANG Tao, CAI Guo-jun, LIU Song-yu, DUAN Wei-hong, WANG Peng-cheng. Experimental study on strength characteristics and micromechanism of rubber-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1082-1088. DOI: 10.11779/CJGE201706014

橡胶-砂颗粒混合物强度特性及微观机制试验研究  English Version

基金项目: 国家自然科学基金项目(41672294); 国家重点研发计划课题(2016YFC0800201); 中央高校基本科研业务费专项资金项目(CUG170636,CUGL170807)
详细信息
    作者简介:

    张 涛(1986- ),男,安徽合肥人,博士,主要从事工业废渣再利用和特殊地基处理等方面的研究工作。E-mail: zhangtao_seu@163.com。

    通讯作者:

    蔡国军,E-mail:focuscai@163.com

  • 中图分类号: TU449

Experimental study on strength characteristics and micromechanism of rubber-sand mixtures

  • 摘要: 为揭示橡胶-砂颗粒混合物强度特性变化规律和微观结构特征,通过室内直剪试验、无侧限抗压强度试验和扫描电镜试验,研究橡胶掺量、竖向应力和养护龄期等对颗粒混合物抗剪强度、内摩擦角、应力-应变关系和抗压强度的影响,同时定性评价颗粒混合物微观结构的变化,探讨橡胶-砂颗粒混合物相互作用的微观机制。结果表明:橡胶-砂颗粒混合物密度随橡胶掺量增加而线性减小;橡胶颗粒的添加会降低颗粒混合物的抗剪强度和抗压强度,内摩擦角与橡胶掺量呈线性减小关系;橡胶-砂颗粒混合物的应力-应变特征随橡胶掺量增加表现出由“脆性”向“韧性”转变的趋势;低橡胶掺量的颗粒混合物受荷介质主要是砂颗粒组成的受力链,橡胶颗粒可有效阻止砂颗粒的滑移和倾覆,高橡胶掺量的颗粒混合物主要依靠橡胶颗粒的大变形承担荷载。
    Abstract: To illustrate the variation laws of strength characteristics and micromechanism of rubber-sand mixtures, a series of laboratory tests including direct shear tests, unconfined compressive strength tests and scanning electron microscopy analysis are conducted to study the effects of rubber fraction, vertical stress and curing time on the shear strength, internal friction angle, stress-strain characteristics and unconfined compression strength of sand-rubber mixtures. Moreover, the variations of microstructure of rubber-sand mixtures are qualitatively evaluated, and the micromechanisms of the mixtures are also discussed. The experimental results show that the density of rubber-sand mixtures decreases linearly with the increase in rubber fraction. Addition of rubber chip can reduce the shear strength and unconfined compression strength of mixtures. The relationship between internal friction angle and rubber fraction is linear. The stress-strain characteristics of rubber-sand mixtures exhibit a tendency to change from “brittle” to “ductile” with the increase in rubber fraction. Some force chains are generated to support the external loading when the rubber fraction is low. Rubber chips often play an important role in preventing the slipping and buckling of sand particles. The rubber-sand mixtures with high rubber fraction mainly rely on the large deformation of rubber chips to support the loading.
  • [1] 辛 凌, 刘汉龙, 沈 扬, 等. 废弃轮胎橡胶颗粒轻质混合土强度特性试验研究[J]. 岩土工程学报, 2010, 32(3): 428-433. (XIN Ling, LIU Han-long, SHEN Yang, et al. Consolidated undrained triaxial compression tests on lightweight soil mixed with rubber chips of scrap tires[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 428-433. (in Chinese))
    [2] 方 芳, 周勇敏, 张 继. 废轮胎回收制胶粉及其应用进展[J]. 材料科学与工程学报, 2007, 25(1): 164-168. (FANG Fang, ZHOU Yong-min, ZHANG Ji. Advances in recycling of waste tyre for preparation of powdered rubber and its applications[J]. Journal of Materials Science and Engineering, 2007, 25(1): 164-168. (in Chinese))
    [3] TSOI W Y, LEE K M. Mechanical properties of cemented scrap rubber tyre chips[J]. Géotechnique, 2010, 60(2): 133-141.
    [4] 张正甫, 刘松玉, 蔡光华, 等. 废旧轮胎在道路工程中的研究进展[J]. 土木工程学报, 2015, 48(增刊2): 361-368. (ZHANG Zheng-fu, LIU Song-yu, CAI Guang-hua, et al. Research progress of scrap tires used in road engineering[J]. China Civil Engineering Journal, 2015, 48(S2): 361-368. (in Chinese))
    [5] 李朝晖, 张虎元. 废轮胎颗粒与黄土混合物压实性能研究[J]. 岩土力学, 2010, 31(12): 3715-3720. (LI Zhao-hui, ZHANG Hu-yuan. Compaction properties of granulated rubber and loess mixtures[J]. Rock and Soil Mechanics 2010, 31(12): 3715-3720. (in Chinese))
    [6] TAFRESHI S N M, MEHRJARDI G T, DAWSON A R. Buried pipes in rubber-soil backfilled trenches under cyclic loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(11): 1346-1356.
    [7] HENNEBERT P, LAMBERT S, FOUILLEN F, et al. Assessing the environmental impact of shredded tires as embankment fill material[J]. Canadian Geotechnical Journal, 2014, 51(5): 469-478.
    [8] SANTONI R L, TINGLE J S, WEBSTER S L. Engineering properties of sand-fiber mixtures for road construction[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(3): 258-268.
    [9] CHRIST M, PARK J B, HONG S S. Laboratory observation of the response of a buried pipeline to freezing rubber-sand backfill[J]. Journal of Materials in Civil Engineering, 2010, 22(9): 943-950.
    [10] PAMUKCU S, AKBULUT S. Thermoelastic enhancement of damping of sand using synthetic ground rubber[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(4): 501-510.
    [11] AYDILEK A H, MADDEN E T, DEMIRKAN M M. Field evaluation of a leachate collection system constructed with scrap tires[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(8): 990-1000.
    [12] EDIL T B, BOSSCHER P J. Engineering properties of tire chips and soil mixtures[J]. Geotechnical Testing Journal, 1994, 17(4): 453-464.
    [13] BERNAL A, SALGADO R, SWAN R H, et al. Interaction between tire shreds, rubber-sand and geosynthetics[J]. Geosynthetics International, 1997, 4(6): 623-643.
    [14] LEE J S, DODDS J, SANTAMARINA J C. Behavior of rigid-soft particle mixtures[J]. Journal of Materials in Civil Engineering, 2007, 19(2): 179-184.
    [15] KIM Y T, KANG H S. Engineering characteristics of rubber-added lightweight soil as a flowable backfill material[J]. Journal of Materials in Civil Engineering, 2011, 23: 1289-1294.
    [16] 段伟宏, 张 涛, 蔡国军. 橡胶颗粒-砂混合物压缩特性试验研究[J]. 工程地质学报, 2015, 23(增刊1): 200-204. (DUAN Wei-hong, ZHANG Tao, CAI Guo-jun. Expermental study on compressibility characteristic of rubber-sands mixtures[J]. Journal of Engineering Geology, 2015, 23(S1): 200-204. (in Chinese))
    [17] SENETAKIS K, ANASTASIADIS A, PITILAKIS K. Dynamic properties of dry sand/rubber (SRM) and gravel/rubber (GRM) mixtures in a wide range of shearing strain amplitudes[J]. Soil Dynamics and Earthquake Engineering, 2012, 33(1): 38-53.
    [18] BOLTON M D. The strength and dilatancy of sands[J]. Géotechnique, 1986, 36(1): 65-78.
    [19] ZHANG T, CAI G, LIU S, et al. Laboratory observation of engineering properties and deformation mechanisms of cemented rubber-sand mixtures[J]. Construction and Building Materials, 2016, 120: 514-523.
    [20] LEE C, TRUONG Q H, LEE J S. Cementation and bond degradation of rubber-sand mixtures[J]. Canadian Geotechnical Journal, 2010, 47(7): 763-774.
  • 期刊类型引用(4)

    1. 鲁喜辉,刘计寒,李文杰,吴佳佳,杨帆,白刚,方程,宋凯,韩昌良. 深井强采动巷道顶板离层临界预警值研究及控制对策. 能源技术与管理. 2024(05): 6-9+210 . 百度学术
    2. 张丁丁. 人工解放层在冲击地压防治中的应用实践探索. 山东煤炭科技. 2023(02): 157-159+166 . 百度学术
    3. 郑建伟,王书文,李海涛,杨国强,吕大钊,刘彪,付玉凯,李晓鹏,雷国荣. 层面数量对煤岩组合体抗压特性影响的实验研究. 煤田地质与勘探. 2023(05): 11-22 . 百度学术
    4. 李忠华,包思远,梁影,尹万蕾. 矩形巷道冲击地压影响因素研究. 煤炭科学技术. 2018(10): 51-57 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 10
出版历程
  • 收稿日期:  2016-03-04
  • 发布日期:  2017-06-24

目录

    /

    返回文章
    返回