• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

非饱和土水汽迁移与相变:两类“锅盖效应”的试验研究

张升, 贺佐跃, 滕继东, 刘岩, 盛岱超

张升, 贺佐跃, 滕继东, 刘岩, 盛岱超. 非饱和土水汽迁移与相变:两类“锅盖效应”的试验研究[J]. 岩土工程学报, 2017, 39(5): 961-968. DOI: 10.11779/CJGE201705022
引用本文: 张升, 贺佐跃, 滕继东, 刘岩, 盛岱超. 非饱和土水汽迁移与相变:两类“锅盖效应”的试验研究[J]. 岩土工程学报, 2017, 39(5): 961-968. DOI: 10.11779/CJGE201705022
ZHANG Sheng, HE Zuo-yue, TENG Ji-dong, LIU Yan, SHENG Dai-chao. Water vapor transfer and phase change in unsaturated soils: experimental study on two types of canopy effect[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 961-968. DOI: 10.11779/CJGE201705022
Citation: ZHANG Sheng, HE Zuo-yue, TENG Ji-dong, LIU Yan, SHENG Dai-chao. Water vapor transfer and phase change in unsaturated soils: experimental study on two types of canopy effect[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 961-968. DOI: 10.11779/CJGE201705022

非饱和土水汽迁移与相变:两类“锅盖效应”的试验研究  English Version

基金项目: 国家重点基础研究发展计划(“973”计划)项目(2014CB047001); 国家自然科学基金项目(51508578)
详细信息
    作者简介:

    张 升(1979- ),男,教授,主要从事计算岩土力学等方面的教学和科研。E-mail: zhang-sheng@csu.edu.cn。

    通讯作者:

    滕继东,E-mail:tengjidong@163.com

  • 中图分类号: TU431

Water vapor transfer and phase change in unsaturated soils: experimental study on two types of canopy effect

  • 摘要: “锅盖效应”定义为:不透水覆盖层下土体含水率大幅提高甚至饱和。最新的理论研究将“锅盖效应”分为两类,第一类由非饱和土内水气冷凝引起,第二类是冻结条件下由气态水迁移引起。为试验验证两类“锅盖效应”,研究其内在机理,利用新研制的非饱和冻土水汽迁移试验仪,对不同初始含水率的试样开展不同温度条件的水汽迁移试验。试验结果表明:冻结和未冻结两种状态均能使钙质砂试样顶部含水率增加,但冻结状态下的增加幅度显著。冻结状态下,含水率峰值位置与冻结锋面大致相同,且初始含水率越大,试样顶部和冻结锋面处的含水率增加越显著,降温速率越小,气态水迁移越显著;初始含水率增加也能使未冻结状态下的钙质砂试样顶部含水率增加,并且温度梯度对气态水迁移有一定的抑制作用,温度梯度越小,抑制作用越明显。试验结果很好地验证了两类“锅盖效应”的理论。
    Abstract: The canopy effect refers to the phenomenon where moisture accumulates underneath an impervious cover. It can lead to full saturation of the soil immediately underneath the impervious cover. A recent theoretical study separates the canopy effect into two types, the first one is caused by the evaporation-condensation in unsaturated soils, while the second one is induced by the freezing-enhanced vapor transfer in unsaturated soils. In order to experimentally validate these two types of canopy effect and to reveal their mechanisms, water vapor migration experiments are carried out through a newly developed laboratory apparatus for unsaturated frozen soils. Six conditions are performed on a calcareous sand with different initial water contents and boundary temperatures. The results show that the water content in the upper position of the sample increases under an upward temperature gradient, and the increment of water content is greater if the soil is subjected to freezing. For the freezing cases, the depth of a peak water content is in line with the freezing front, and the greater the initial water content, the more the water content accumulated at the freezing front. A smaller cooling rate seems to facilitate the vapor migration. For the unfreezing cases, the water content in the upper position of the sample also increases and the increment becomes more apparent with a higher initial water content. The temperature gradient can inhibit the vapor migration. A smaller temperature gradient always results in a more notable inhibition effect. The test results verify the theory of the canopy effect.
  • [1] 李 强, 姚仰平, 韩黎明, 等. 土体的“锅盖效应”[J]. 工业建筑, 2014, 44(2): 69-71. (LI Qiang, YAO Yang-ping, HAN Li-ming, et al. Pot-cover effect of soil[J]. Industrial Construction, 2014, 44(2): 69-71. (in Chinese))
    [2] 滕继东, 贺佐跃, 张 升, 等. 非饱和土水气迁移与相变:两类“锅盖效应”的发生机理及数值再现[J]. 岩土工程学报, 2016, 38(10): 1813-1821. (TENG Ji-dong, HE Zuo-yue, ZHANG Sheng, et al. Moisture transfer and phase change in unsaturated soils: physical mechanism and numerical model for two types of ‘Canopy effect’[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1813-1821. (in Chinese))
    [3] SMITH W O. Thermal transfer of moisture in soils[J]. Eos, Transactions American Geophysical Union, 1943, 24(2): 511-524.
    [4] GURR C G, MARSHALL T J, HUTTON J T. Movement of water in soil due to a temperature gradient[J]. Soil Science, 1952, 74(5): 335-346.
    [5] JACKSON R D. Water vapor diffusion in relatively dry soil: I. Theoretical considerations and sorption experiments[J]. Soil Science Society of America Journal, 1964, 28(2): 172-176.
    [6] MIYAZAKI T. Condensation and movement of water vapour in sand under temperature gradient[J]. Transactions of the Japanese Society of Irrigation, Drainage and Reclamation Engineering, 1976, 61: 1-8.
    [7] DOBCHUK B S, BARBOUR S L, ZHOU J. Prediction of water vapor movement through waste rock[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(3): 293-302.
    [8] 王铁行, 贺再球, 赵树德, 等. 非饱和土体气态水迁移试验研究[J]. 岩石力学与工程学报, 2005, 24(18): 3271-3275. (WANG Tie-hang, HE Zai-qiu, ZHAO Shu-de, et al. Experimental study on vaporous water transference in loess and sandy soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(18): 3271-3275. (in Chinese))
    [9] NAKANO Y, TICE A, OLIPHANT J. Transport of water in frozen soil: III experiments on the effects of ice content[J]. Advances in Water Resources, 1984, 7(1): 28-34.
    [10] 马 巍, 王大雁. 中国冻土力学研究50 a 回顾与展望[J]. 岩土工程学报, 2012, 34(4): 625-639. (MA Wei, WANG Da-yan. Studies on frozen soil mechanics in China in past 50 years and their prospect[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 625-639. (in Chinese))
    [11] NAKANO Y, TICE A, OLIPHANT J. Transport of water in frozen soil: IV analysis of experimental results on the effects of ice content[J]. Advances in Water Resources, 1984, 7(2): 58-66.
    [12] EIGENBROD K, KENNEPOHL G. Moisture accumulation and pore water pressures at base of pavements[J]. Transportation Research Record, 1996, 1546(29): 151-161.
    [13] GUTHRIE W S, HERMANSSON Å, WOFFINDEN K H. Saturation of granular base material due to water vapor flow during freezing: laboratory experimentation and numerical modeling[C]// Cold Regions Engineering 2006: Current Practices in Cold Regions Engineering. Orono, 2014: 1-12.
    [14] 王铁行, 王娟娟, 张龙党. 冻结作用下非饱和黄土水分迁移试验研究[J]. 西安建筑科技大学学报(自然科学版), 2012, 44(1): 7-12. (WANG Tie-hang, WANG Juan-juan, ZHANG Long-dang. Experimental research on moisture migration in freezing unsaturated loess[J]. Journal of Xi'an University of Architecture and Technology (Nature and Science Edition), 2012, 44(1): 7-12. (in Chinese))
    [15] PHILIP J R, DE VRIES D A. Moisture movement in porous materials under temperature gradient[J]. Trans Am Geophys Union, 1957, 38: 222-232.
    [16] DE VRIES D A. Simultaneous transfer of heat and moisture in porous media[J]. Trans Am Geophys Union, 1958, 39: 909-916.
    [17] WARK K J. Generalized Thermodynamic Relationships. Thermodynamics[M]. 5th ed. New York: McGraw-Hill Inc, 1988.
    [18] SHENG D, ZHANG S, YU Z, ZHANG J S. Assessing frost susceptibility of soils using PCHeave[J]. Cold Region Science Technology, 2013, 95: 27-38.
    [19] ZHANG S, SHENG D, ZHAO G, et al. Analysis of frost heave mechanisms in a high-speed railway embankment[J]. Canadian Geotechnical Journal, 2015 53(3): 520-529.
    [20] SHENG D, ZHAO G, ZHANG S, et al. Possible frost heave mechanisms in an unsaturated high-speed railway formation. unsaturated soils: research and applications[C]// Proceedings of the 6th International Conference on Unsaturated Soils, UNSAT 2014: 3-14.
    [21] SHENG D, ZHANG S, NIU F, et al. A potential new frost heave mechanism in high-speed railway embankments[J]. Géotechnique, 2014, 64(2): 144-154.
    [22] ZHANG S, TENG J, HE Z, et al. Importance of vapor flow in unsaturated freezing soil: a numerical study[J]. Cold Regions Science and Technology, 2016, 126: 1-9.
    [23] 盛岱超, 张 升, 贺佐跃. 土体冻胀敏感性评价[J]. 岩石力学与工程学报, 2014, 33(3): 594-605. (SHENG Dai-chao, ZHANG Sheng, HE Zuo-yue. Assessing frost susceptibility of soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(3): 594-605. (in Chinese))
计量
  • 文章访问数:  537
  • HTML全文浏览量:  6
  • PDF下载量:  552
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-21
  • 发布日期:  2017-05-24

目录

    /

    返回文章
    返回