• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于土壤物理特性扩展技术的土水特征曲线预测方法

刘士雨, 俞缙, 蔡燕燕, 涂兵雄

刘士雨, 俞缙, 蔡燕燕, 涂兵雄. 基于土壤物理特性扩展技术的土水特征曲线预测方法[J]. 岩土工程学报, 2017, 39(5): 924-931. DOI: 10.11779/CJGE201705017
引用本文: 刘士雨, 俞缙, 蔡燕燕, 涂兵雄. 基于土壤物理特性扩展技术的土水特征曲线预测方法[J]. 岩土工程学报, 2017, 39(5): 924-931. DOI: 10.11779/CJGE201705017
LIU Shi-yu, YU Jin, CAI Yan-yan, TU Bing-xiong. Prediction of soil water characteristic curve using physically based scaling technique[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 924-931. DOI: 10.11779/CJGE201705017
Citation: LIU Shi-yu, YU Jin, CAI Yan-yan, TU Bing-xiong. Prediction of soil water characteristic curve using physically based scaling technique[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 924-931. DOI: 10.11779/CJGE201705017

基于土壤物理特性扩展技术的土水特征曲线预测方法  English Version

基金项目: 国家自然科学基金面上项目(51679093,51374112); 福建省自然科学基金面上项目(2015J01210); 福建省教育厅科技产学研项目(JA15023); 华侨大学引进高层次人才启动项目(14BS211)
详细信息
    作者简介:

    刘士雨(1979- ),男,博士,讲师,主要从事非饱和土力学理论与试验等方面的教学和研究工作。E-mail: scholarrain@163.com。

  • 中图分类号: TU442

Prediction of soil water characteristic curve using physically based scaling technique

  • 摘要: 土水特征曲线是模拟水和污染物在非饱和土中运移的重要水力特性参数。但是,土水特征曲线的直接量测方法比较困难。Arya 和 Paris 提出了一种通过粒径分布曲线预测土水特征曲线的模型——AP模型。该模型引入一个转换系数a建立土体假想形态与真实形态之间的联系。但是,现有的推导系数a的方法一方面计算过程过于复杂,另一方面没有全面考虑土的物理特性。基于土壤物理特性扩展技术提出一种新的计算参数a的方法。为了验证新方法,从非饱和土水力特性数据库中选出不同类型的土壤样本,采用新方法分别计算出各类型土壤的参数a。然后,将计算出的参数a用于预测其他土样的土水特征曲线,从而验证新方法计算出的参数a的有效性。还将提出的新方法与其他利用AP模型预测土水特征曲线的代表性方法进行对比,结果显示该方法预测结果更加准确。
    Abstract: The soil water characteristic curve (SWCC) is an important hydraulic parameter for modeling water flow and contaminant transport in the unsaturated soil. However, direct measurement of the SWCC is still difficult. The Arya and Paris (AP) model estimates the SWCC from particle-size distribution curve (PSD) based on the shape similarity of the two curves. It introduces an empirical parameter, a, used to scale pore attributes from hypothetical formations to natural structures. Several approaches are used to derive a. However, the calculation procedures of these approaches are either quite complicated or developed without paying much attention to the physical significance of the soil properties. In the present paper the physically based scaling technique (PBS) is employed to derive a for the AP model. Fifty soil samples, representing a range of textures that include sand, sandy loam, loam, silt loam and clay, are selected from UNSODA hydraulic property database for calculating a using the PBS approach. In addition, nineteen soil samples with different textures are used to verify the effectiveness of proposed a values. The results are compared with those of other approaches and show that the PBS technique combining with the AP model is a more useful and easier approach to predict SWCC from PSD.
  • [1] 陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201-271. (CHEN Zheng-han. On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201-271. (in Chinese))
    [2] HENRY E J, SMITH J E. Numerical demonstration of surfactant concentration-dependent capillarity and viscosity effects on infiltration from a constant flux line source[J]. Journal of Hydrology, 2006, 329(1): 63-74.
    [3] IRESON A M, MATHIAS S A, WHEATER H S, et al. A model for ?ow in the chalk vadose zone incorporating progressive weathering[J]. Journal of Hydrology, 2009, 365(3): 244-260.
    [4] LIU S Y,YASUFUKU N, LIU Q, et al. Bimodal and multimodal descriptions of soil-water characteristic curves for structural soils[J]. Water Science and Technology, 2013, 67(8): 1740-1747.
    [5] LIU S Y,YASUFUKU N, LIU Q, et al. Physically based closed-form expression for the bimodal unsaturated hydraulic conductivity function[J]. Water Science and Technology, 2013, 68(2): 328-334.
    [6] 张季如, 胡 泳, 余红玲, 等. 黏性土粒径分布的多重分形特性及土-水特征曲线的预测研究[J]. 水利学报, 2015, 46(6): 650-657. (ZHANG Ji-ru, HU Yong, YU Hong-ling, et al. Predicting soil-water characteristic curve from multi-fractal particle-size distribution of clay[J]. Journal of Hydraulic Engineering, 2015, 46(6): 650-657. (in Chinese))
    [7] ARYA L M, BOWMAN D C, THAPA B B, et al. Scaling soil water characteristics of golf course and athletic field sands from particle-size distribution[J]. Soil Science Society of America Journal, 2008, 72(1): 25-32.
    [8] 刘建立, 徐绍辉, 刘 慧. 估计土壤水分特征曲线的间接方法研究进展[J]. 水利学报, 2004, 35(2): 68-78. (LIU Jian-li, XU Shao-hui, LIU Hui. A review of development in estimating soil water retention characteristics from soil data[J]. Journal of Hydraulic Engineering, 2004, 35(2): 68-78. (in Chinese))
    [9] ARYA L M, PARIS J F. A physico-empirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data[J]. Soil Science Society of America Journal, 1981, 45(6): 1023-1030.
    [10] BASILE A, D’URSO G. Experimental corrections of simplified methods for predicting water retention curves in clay-loamy soils from particle-size determination[J]. Soil Technology, 1997, 10(3): 261-272.
    [11] ARYA L M, LEIJ F J, VAN GENUCHTEN M TH, et al. Scaling parameter to predict the soil water characteristic from particle-size distribution data[J]. Soil Science Society of America Journal, 1999, 63(3): 510-519.
    [12] VAZ C M P, IOSSI M D F, NAIME J D M, et al. Validation of the Arya and Paris water retention model for Brazilian soils[J]. Soil Science Society of America Journal, 2005, 69(3): 577-583.
    [13] MILLER E E, MILLER R D. Physical theory of capillary flow phenomena[J]. Journal of Applied Physics. 1956, 27(4): 324-332.
    [14] PECK A J, LUXMOORE R J, STOLAZY J C. Effects of spatial variability of soil hydraulic properties in water budgetmodelling[J]. Water Resources Research, 1997, 13(2): 348-354.
    [15] TULI A, KOSUGI K, HOPMANS J W. Simultaneous scaling of soil water characteristic and unsaturated hydraulic conductivity functions assuming lognormal pore-size distribution[J]. Water Resources Research, 2001, 24(6): 677-688.
    [16] KOSUGI K, HOPMANS J W. Scaling water retention curves for soils with lognormal pore-size distribution[J]. Soil Science Society of America Journal, 1998, 62(6): 1496-1505.
    [17] DAS B S, HAWS N W, RAO P S C. Defining geometric similarity in soils[J]. Vadose Zone Journal, 2005, 4(2): 264-270.
    [18] NEMES A, SCHAAP M G, LEIJ F J. Description of the unsaturated soil hydraulic database UNSODA version 2.0[J]. Journal of Hydrology, 2001, 251(3): 151-162.
    [19] WARRICK A W, MULLEN G J, NIELSEN D R. Scaling field measured soil hydraulic properties using similar media concept[J]. Water Resources Research, 1977, 13(2): 355-362.
    [20] CHAN T P, GOVINDARAJU R S. Soil water retention curves from particle-size distribution data based on polydisperse sphere systems[J]. Vadose Zone Journal, 2004, 3(4): 1443-1454.
    [21] FREDLUND D G, XING A. Equations for the soil water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532.
    [22] BUCHAN G D. Applicability of the simple lognormal model to particle-size distribution in soils[J]. Soil Science, 1989, 147(3): 155-161.
    [23] TYLER S, WHEATCRAFT S. Application of fractal mathematics to soil water characteristic estimation[J]. Soil Science Society of America Journal, 1989, 53(4): 987-996.
  • 期刊类型引用(16)

    1. 陈威,王法鑫,蒙邹蕾,姚森,王翀霄,孙阳. 大直径盾构推进引起的桩基侧向位移分析. 甘肃科学学报. 2024(02): 95-101 . 百度学术
    2. 丁智,张默爆,张霄,魏新江,申文明,周俊宏. 饱和土地区不同直径盾构穿越既有隧道的理论研究. 中南大学学报(自然科学版). 2024(04): 1447-1462 . 百度学术
    3. 张志军,王永杰,陈海伦,贺晨,綦嘉诚,杨智,张连君. 盾构区间隧道下穿暗渠施工稳定性分析. 市政技术. 2024(07): 95-100+108 . 百度学术
    4. 高子明. 盾构隧道穿越饱和砂土层的流固耦合分析. 低温建筑技术. 2024(11): 131-136 . 百度学术
    5. 蔡晓明,潘泓,骆冠勇,曹洪. 大直径盾构施工引起的软土竖向变形计算研究. 河南理工大学学报(自然科学版). 2023(01): 185-193 . 百度学术
    6. 白伟,宁茂权,关振长. 地形不对称条件下盾构隧道掘进施工的地表沉降特性. 福州大学学报(自然科学版). 2023(02): 205-212 . 百度学术
    7. 房新胜,叶来宾,朱牧原,杜贵新. 清华园隧道大直径泥水盾构始发控制掘进分析. 铁道勘察. 2022(01): 81-86 . 百度学术
    8. 杨召召,祝彦知,纠永志. 盾构隧道施工引起纵向地表沉降的黏弹性分析. 河南城建学院学报. 2022(04): 1-6+18 . 百度学术
    9. 汤新辉,首正勇,刘建柯. 超大直径盾构施工引发的上软下硬地层地表沉降规律. 矿冶工程. 2022(05): 34-38+43 . 百度学术
    10. 许梦飞,姜谙男,史洪涛,李德生,万友生,程利民. 下穿暗涵盾构隧道施工过程损伤-渗流耦合分析. 公路工程. 2022(05): 47-54+101 . 百度学术
    11. 苏凤阳,朱建才,李东泰,董毓庆,丁智,陈乐华. 上软下硬地层大直径泥水盾构施工土体变形研究. 建筑结构. 2022(S2): 2675-2681 . 百度学术
    12. 周洁. 大直径泥水盾构机滚动角纠偏技术. 安徽建筑. 2021(01): 164-166 . 百度学术
    13. 邓皇适,傅鹤林,史越. 小转弯半径曲线盾构隧道开挖引发地表沉降计算. 岩土工程学报. 2021(01): 165-173 . 本站查看
    14. 丁智,何晨阳,董毓庆,吴勇,冯丛烈. 含气地层盾构施工引起的土体变形理论研究. 岩石力学与工程学报. 2021(11): 2330-2343 . 百度学术
    15. 朱帆济. 大直径泥水盾构施工对粉质黏土地层变形的影响. 施工技术. 2020(09): 71-73 . 百度学术
    16. 牟天光,祝江林. 不同施工条件下双线盾构隧道施工引发地表变形规律研究. 湖南文理学院学报(自然科学版). 2020(04): 75-79 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 31
出版历程
  • 收稿日期:  2016-05-21
  • 发布日期:  2017-05-24

目录

    /

    返回文章
    返回