• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于微震能量演化的大岗山右岸边坡抗剪洞加固效果研究

庄端阳, 唐春安, 梁正召, 马克

庄端阳, 唐春安, 梁正召, 马克. 基于微震能量演化的大岗山右岸边坡抗剪洞加固效果研究[J]. 岩土工程学报, 2017, 39(5): 868-878. DOI: 10.11779/CJGE201705011
引用本文: 庄端阳, 唐春安, 梁正召, 马克. 基于微震能量演化的大岗山右岸边坡抗剪洞加固效果研究[J]. 岩土工程学报, 2017, 39(5): 868-878. DOI: 10.11779/CJGE201705011
ZHUANG Duan-yang, TANG Chun-an, LIANG Zheng-zhao, MA Ke. Reinforcement effect of anti-shear tunnels of Dagangshan right bank slope based on microseismic energy evolution[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 868-878. DOI: 10.11779/CJGE201705011
Citation: ZHUANG Duan-yang, TANG Chun-an, LIANG Zheng-zhao, MA Ke. Reinforcement effect of anti-shear tunnels of Dagangshan right bank slope based on microseismic energy evolution[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 868-878. DOI: 10.11779/CJGE201705011

基于微震能量演化的大岗山右岸边坡抗剪洞加固效果研究  English Version

基金项目: 国家重点基础研究发展计划(“973”计划)项目(2014CB047100); 国家自然科学基金项目(51274053)
详细信息
    作者简介:

    庄端阳(1990- ),男,博士研究生,主要从事工程岩体微震监测及稳定性分析方面的研究工作。E-mail:zhuangdy@mail.dlut.edu.cn。

  • 中图分类号: TU457

Reinforcement effect of anti-shear tunnels of Dagangshan right bank slope based on microseismic energy evolution

  • 摘要: 微震监测技术在岩体工程监测中获得了广泛的应用,但如何依据微震监测数据来评价岩体工程的稳定性,至今还存在很多问题。以大岗山右岸边坡工程为研究背景,基于定量微震学原理,采用微震能量密度来综合反映岩体微破裂分布特征,并在理论上推导微震能量-频度关系,提出以bε值来表征岩体微破裂变形程度,进一步研究了该边坡抗剪洞加固前后边坡岩体微震能量转移特征、震源机制、变形特性及其稳定性演化规律。研究结果表明,微震能量密度可以帮助识别边坡潜在危险区域,能量-频度关系中的bε值的变化揭示了边坡微破裂与变形的演化过程;抗剪洞加固后边坡微震事件活动率和能量密度均明显降低,边坡受力性能明显改善;边坡开挖期间抗剪洞加固区岩体微震的bε值小幅降低,并在抗剪洞加固后有所增加,表明抗剪洞抑制了岩体微破裂及变形,提高了边坡稳定性。通过对比工程现场变形监测结果,验证了方法的可靠性。提出的微震能量密度及能量-频度关系相结合的评价方法,丰富了工程岩体稳定性微震分析方法,可为类似岩质边坡加固措施的选择及稳定性分析提供参考。
    Abstract: Microseismic monitoring technology has been widely used in rock mass engineering monitoring. There are still many problems in stability evaluation of rock mass engineering using the microseismic data. In this study, microseismic energy density is proposed to characterize the micro-crack distributions of rock mass based on the quantitative seismology. Besides, the energy-frequency relation is derived theoretically and the bεvalue is used to represent the micro-cracking deformation. Then the microseismic energy transference and evolutions of focal mechanism, micro-cracking deformation and stability of Dagangshan right bank slope before and after reinforcement by anti-shear tunnels are discussed. Some conclusions are drawn as follows: Firstly, potential dangerous area of the slope can be determined using the microseismic energy density, and evolutions of micro-cracking deformation and rock stability are revealed by tracking the variation of bεvalue in the energy-frequency relation. Secondly, the microseismic event rate and energy density decrease significantly after reinforcement, and its mechanical behavior is obviously improved. Finally, the bε value of reinforced rock masses decreases slightly along with slope excavation and increases after reinforcement, which demonstrates that the micro-cracking deformation is controlled and the stability is improved after reinforcement, and these are in accordance with the monitoring results of slope deformation, validating the reliability of the proposed method, which enriches the microseismic analysis methods for rock mass engineering stability. It may provide references for choosing
  • [1] 黄润秋. 岩石高边坡发育的动力过程及其稳定性控制[J]. 岩石力学与工程学报, 2008, 27(8): 1525-1544. (HUANG Run-qiu. Geodynamical process and stability control of high rock slope development[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1525-1544. (in Chinese))
    [2] 邬爱清, 朱杰兵, 付 敬, 等. 三峡工程永久船闸中隔墩岩体变形全过程测试研究[J]. 岩石力学与工程学报, 2001, 20(增刊): 1649-1653. (WU Ai-qing, ZHU Jie-bing, FU Jing, et al. Research on deformation measurement of whole process for the middle rock wall of the permanent ship lock at TGP[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(S0): 1649-1653. (in Chinese))
    [3] 宁 宇, 徐卫亚, 郑文棠, 等. 白鹤滩水电站拱坝及坝肩加固效果分析及整体安全度评价[J]. 岩石力学与工程学报, 2008, 27(9): 1890-1898. (NING Yu, XU Wei-ya, ZHENG Wen-tang, et al. Reinforcement effect analysis and global safety evaluation of arch dam and abutment of Baihetan hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9): 1890-1898. (in Chinese))
    [4] 漆祖芳, 姜清辉, 唐志丹, 等. 锦屏一级水电站左岸坝肩边坡施工期稳定分析[J]. 岩土力学, 2012, 33(2): 531-538. (QI Zu-fang, JIANG Qing-hui, TANG Zhi-dan, et al. Stability analysis of abutment slope at left bank of Jinping-I hydropower project during construction[J]. Rock and Soil Mechanics, 2012, 33(2): 531-538. (in Chinese))
    [5] 黎满林, 卫 蔚, 张荣贵. 大岗山右岸边坡卸荷裂隙密集带加固及稳定性评价研究[J]. 岩石力学与工程学报, 2014, 33(11): 2276-2282. (LI Man-lin, WEI Wei, ZHANG Rong-gui. Stability evaluation and reinforcement of unloading fissures in right bank of Dagangshan hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(11): 2276-2282. (in Chinese))
    [6] 马 克, 唐春安, 李连崇, 等. 基于微震监测与数值模拟的大岗山右岸边坡抗剪洞加固效果分析[J]. 岩石力学与工程学报, 2013, 32(6): 1239-1247. (MA Ke, TANG Chun-an, LI Lian-chong, et al. The effect analysis of the Dagangshan right bank slope anti-shear tunnel reinforcement based on microseismicity monitoring and numerical analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(6): 1239-1247. (in Chinese))
    [7] 徐奴文, 唐春安, 吴思浩, 等. 微震监测技术在大岗山水电站右岸边坡中的应用[J]. 防灾减灾工程学报, 2010, 30(增刊): 216-221. (XU Nu-wen, TANG Chun-an, WU Si-hao, et al. Application of microseismic monitoring technique in the right bank slope of Dagangshan hydropower station[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(S0): 216-221. (in Chinese))
    [8] 于 群, 唐春安, 李连崇, 等. 基于微震监测的锦屏二级水电站深埋隧洞岩爆孕育过程分析[J]. 岩土工程学报, 2014, 36(12): 2315-2322. (YU Qun, TANG Chun-an, LI Lian-chong, et al. Nucleation process of rockbursts based on microseismic monitoring of deep-buried tunnels for JinpingⅡHydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2315-2322. (in Chinese))
    [9] 马 克. 开挖扰动条件下岩质边坡灾变孕育机制、监测与控制方法研究[D]. 大连: 大连理工大学, 2014. (MA Ke. Study on the potential failure mechanism, monitoring and controlling methods of rock slope under excavation[D]. Dalian: Dalian University of Technology, 2014. (in Chinese))
    [10] SNELLING P E, LAURENT G, MCKINNON S D. The role of geologic structure and stress in triggering remote seismicity in Creighton Mine, Sudbury, Canada[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 58(2): 167-179.
    [11] BOATWRIGNT J, FLETCHER J B. The partition of radiated energy between P and S waves[J]. Bulletin of the Seismological Society of America, 1984, 74(2): 361-376.
    [12] AKI K, RICHARDS P G. Quantitative seismology:theory and methods (Vol I and II)[M]. San Francisco: WH Freeman and Co, 1980.
    [13] MENDECKI A J. Seismic monitoring in mines[M]. London: Chapman & Hall, 1996: 181-186.
    [14] GIBOWICZ S J, KILKO A. An introduction to mining seismology[M]. San Diego: Academic Press Inc, 1994: 2-8, 15-22.
    [15] SENATORSKI P. Apparent stress scaling and statistical trends[J]. Physics of the Earth and Planetary Interiors, 2007, 160(3): 230-244.
    [16] MENDECKI A J, VAN ASWEGEN G. Seismic monitoring in mines: selected terms and definitions[C]// Proceedings of Rockbursts and Seismicity in Mines—RaSiM5. Johannesburg, 2001: 563-570.
    [17] 徐奴文, 戴 峰, 周 钟, 等. 岩质边坡微震事件 b 值特征研究[J]. 岩石力学与工程学报, 2014, 33(增刊1): 3868-3874. (XU Nu-wen,DAI Feng, ZHOU Zhong, et al. Study of Characteristics of b value for microseismic events in high rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 3868-3874. (in Chinese))
    [18] 李全林, 于 涛, 郝柏林, 等. 地震频度-震级关系的时空扫描[M]. 北京: 地震出版社, 1979: 109. (LI Quan-lin, YU Tao, HAO Bo-lin, et al. Tempo-spatial scanning of earthquake frequency magnitude relation[M]. Beijing: Seismological Press, 1979: 109. (in Chinese))
    [19] 陈运泰, 刘瑞丰. 地震的震级[J]. 地震地磁观测与研究, 2004, 25(6): 1-12. (CHEN Yun-tai, LIU Rui-feng. Earthquake magnitude[J]. Seismological and Geomagnetic Observation and Research, 2004, 25(6): 1-12. (in Chinese))
    [20] HANKS T C, KANAMORI H. A moment magnitude scale[J]. Journal of Geophysical Research, 1979, 84: 2348-2350.
    [21] WANG C L, WU A X, LIU X H, et al. Study on fractal characteristics of b value with microseismic activity in deep mining[J]. Procedia Earth and Planetary Science, 2009, 1(1): 592-597.
    [22] 王俤剀, 王界雄, 董瑜斐. 大岗山水电站卸荷裂隙密集带对高陡边坡稳定性的影响与分析[J]. 长江科学院院报, 2014, 31(11): 87-91. (WANG Di-kai, WANG Jie-xiong, DONG Yu-fei. Effects of dense unloading fissures belt on the stability of high and steep slope of Dagangshan hydropower station[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(11): 87-91. (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-19
  • 发布日期:  2017-05-24

目录

    /

    返回文章
    返回