• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于离散元法的真三轴应力状态下砂土破碎行为研究

周伦伦, 楚锡华, 徐远杰

周伦伦, 楚锡华, 徐远杰. 基于离散元法的真三轴应力状态下砂土破碎行为研究[J]. 岩土工程学报, 2017, 39(5): 839-847. DOI: 10.11779/CJGE201705008
引用本文: 周伦伦, 楚锡华, 徐远杰. 基于离散元法的真三轴应力状态下砂土破碎行为研究[J]. 岩土工程学报, 2017, 39(5): 839-847. DOI: 10.11779/CJGE201705008
ZHOU Lun-lun, CHU Xi-hua, XU Yuan-jie. Breakage behavior of sand under true triaxial stress based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 839-847. DOI: 10.11779/CJGE201705008
Citation: ZHOU Lun-lun, CHU Xi-hua, XU Yuan-jie. Breakage behavior of sand under true triaxial stress based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 839-847. DOI: 10.11779/CJGE201705008

基于离散元法的真三轴应力状态下砂土破碎行为研究  English Version

基金项目: 国家自然科学基金项目(10802060,11172216,11472196); 国家重点基础研究发展(“973”计划)计划项目(2010CB731502)
详细信息
    作者简介:

    周伦伦(1991- ),男,博士研究生,主要从事岩土颗粒材料力学行为数值模拟研究。E-mail: zhoulunlun@whu.edu.cn。

    通讯作者:

    楚锡华,E-mail:chuxh@whu.edu.cn

  • 中图分类号: TU411

Breakage behavior of sand under true triaxial stress based on discrete element method

  • 摘要: 基于可破碎三维离散颗粒模型模拟了一系列常规三轴试验与真三轴试验,研究了砂土在真三轴应力状态下的破碎行为。数值调查主要关注试样的应力应变特性、级配及相对破碎率的演化。随着围压增大,颗粒破碎率增大,试样应变软化特性和剪胀性逐渐减弱,而超过临界高围压后,由于固结中颗粒大量破碎,试样剪胀性反而增强。真三轴试验中,试样偏应力比峰值均随中主应力参数b值增大而减小。由于破碎随b值增加而明显增大,试样剪胀性随b值增大而逐渐减弱。试样内摩擦角φ随围压增大而减小,其演化关系基本满足对数关系;内摩擦角随b值增大先增大后减小,Lade-Duncan准则较为适合描述其变化规律。此外,试样相对破碎率增大的速率随围压和轴向应变增大而逐渐降低,暗示试样最优终极级配的存在,且相对破碎率与试验输入能量之间存在唯一的双曲线关系。
    Abstract: A series of triaxial compression tests and true triaxial tests based on discrete element method are conducted numerically to investigate the particle breakage behavior of granular materials under triaxial stress conditions. The numerical investigation mainly focuses on the stress-strain behavior, the evolution of the particle-size distribution and relative breakage of the crushable granular assembly. As the confining pressure increases, it is found that the dilatancy and strain softening of granular assembly decrease, which is related to the increase in the particle breakage. Beyond a higher confining pressure, the volumetric dilatation starts to increase, caused by the increase of the particle breakage during consolidation. In true triaxial tests, the peak stress ratio decreases with the increasing intermediate principal stress ratio b. And the increase of b results in the decrease of dilatancy, which stems from the distinct increasing compaction caused by breakage with the increasing b. The internal friction angle φ decreases with the increasing confining pressure, which conforms to a logarithmic relationship, and φ increases first and then decreases with the increasing b, which conforms to the Lade-Duncan failure model. In addition, the increment of the increasing relative breakage declines with the increasing confining pressure and axial strain, which implies the existence of the optimum distribution of granular assembly. The relationship between the particle breakage and the total input energy during tests is found to conform to a unique hyperbolic correlation.
  • [1] NAKATA Y, HYDE A F L, HYODO M, et al. A probabilistic approach to sand particle crushing in the triaxial test[J]. Géotechnique, 1999, 49(5): 567-583.
    [2] LADE P V, YAMAMURO J A, BOPP P A. Significance of particle crushing in granular materials[J]. Journal of Geotechnical Engineering, 1996, 122(4): 309-316.
    [3] TARANTIONO A, HYDE A F L. An experimental investigation of work dissipation in crushable materials[J]. Géotechnique, 2005, 55(8): 575-584.
    [4] EZAOUI A, LECOMPTE T, DI BENEDETTO H, et al. Effects of various loading stress paths on the stress-strain properties and on crushability of an industrial soft granular material[J]. Granular Matter, 2011, 13: 283-301.
    [5] FRANCESCA C, GIULIA M B V, SARAH M S. Breakage of an artificial crushable material under loading[J]. Granular Matter, 2013, 15: 661-673.
    [6] ZHOU W, YANG L, MA G, et al. Macro-micro responses of crushable granular materials in simulated true triaxial tests[J]. Granular Matter, 2015, 17(4): 497-509.
    [7] 周 伟, 刘 东, 马 刚, 等. 基于随机散粒体模型的堆石体真三轴数值试验研究[J]. 岩土工程学报, 2012, 34(4): 748-755. (ZHOU Wei, LIU Dong, MA Gang, et al. Numerical simulation of true triaxial tests on mechanical behaviors of rockfill based on stochastic granule model[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 748-755. (in Chinese))
    [8] 楚锡华, 李锡夔. 离散颗粒多尺度分级模型与破碎模拟[J]. 大连理工大学学报, 2006, 46(3): 319-326. (CHU Xi-hua, LI Xi-kui. Hierarchical multi-scale discrete particle model and crushing simulation[J]. Journal of Dalian University of Technology, 2006, 46(3): 319-326. (in Chinese))
    [9] ZHOU L L, CHU X H. Evolution of anisotropy in granular materials: effect of particle rolling and particle crushing[J]. Strength of Materials, 2014, 46(2): 214-220.
    [10] BONO J D, MCDOWELL G R. DEM of triaxial tests on crushable sand[J]. Granular Matter, 2014, 16(4): 551-562.
    [11] MCDOWELL G R, HARIRECHE O. Discrete element modeling of soil particle fracture[J]. Géotechnique, 2002, 52(2): 131-135.
    [12] CHENG Y P, BOLTON M D, NAKATA Y. Crushing and plastic deformation of soils simulated using DEM[J]. Géotechnique, 2004, 54(2): 131-141.
    [13] BOLTON M D, NAKATA Y, CHENG Y P. Micro- and macro-mechanical behaviour of DEM crushable materials[J]. Géotechnique, 2008, 58(6): 471-480.
    [14] WANG J F, YAN H B. DEM analysis of energy dissipation in crushable soils[J]. Soils and Foundations, 2012, 52(4): 644-657.
    [15] WANG J F, YAN H B. On the role of particle breakage in the shear failure behavior of granular soils by DEM[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37: 832-854.
    [16] 周 博, 黄润秋, 汪华斌, 等. 基于离散元法的砂土破碎演化规律研究[J]. 岩土力学, 2014, 35(9): 2709-2716. (ZHOU Bo, HUANG Run-qiu, WANG Hua-bin, et al. Study of evolution of sand crushability based on discrete elements method[J]. Rock and Soil Mechanics, 2014, 35(9): 2709-2716. (in Chinese))
    [17] MCDOWELL G R, BOLTON M D. On the micromechanics of crushable aggregates[J]. Géotechnique, 1998, 48(5): 667-579.
    [18] DAVIDGE R W. Mechanical behaviour of ceramics[M]. Cambridge: University of Cambridge Press, 1979.
    [19] YAMAMURO J A, LADE P V. Drained sand behavior in axisymmetric tests at high pressures[J]. Journal of Geotechnical Engineering, 1996, 2: 109-119.
    [20] 孔德志, 张丙印, 孙 逊. 人工模拟堆石料颗粒破碎应变的三轴试验研究[J]. 岩土工程学报, 2009, 31(3): 464-469. (KONG De-zhi, ZHANG Bing-yin, SUN Xun. Triaxial tests on particle breakage strain of artificial rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 464-469. (in Chinese))
    [21] 张家铭, 张 凌, 蒋国盛, 等. 剪切作用下钙质砂颗粒破碎试验研究[J]. 岩土力学, 2008, 29(10): 2789-2793. (ZHANG Jia-ming, ZHANG Lin, JIANG Guo-sheng, et al. Research on particle crushing of calcareous sands under triaxial shear[J]. Rock and Soil Mechanics, 2008, 29(10): 2789-2793. (in Chinese))
    [22] HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192.
    [23] EINAV I. Beakage mechanics-part I: theory[J]. Journal of the Mechanics and Physics of Solids, 2007, 55: 1274-1297.
计量
  • 文章访问数:  347
  • HTML全文浏览量:  3
  • PDF下载量:  658
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-25
  • 发布日期:  2017-05-24

目录

    /

    返回文章
    返回