• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

排水竖井在垃圾填埋场滑移治理中的应用及效果分析

何海杰, 兰吉武, 陈云敏, 邱清文, 史炜

何海杰, 兰吉武, 陈云敏, 邱清文, 史炜. 排水竖井在垃圾填埋场滑移治理中的应用及效果分析[J]. 岩土工程学报, 2017, 39(5): 813-821. DOI: 10.11779/CJGE201705005
引用本文: 何海杰, 兰吉武, 陈云敏, 邱清文, 史炜. 排水竖井在垃圾填埋场滑移治理中的应用及效果分析[J]. 岩土工程学报, 2017, 39(5): 813-821. DOI: 10.11779/CJGE201705005
HE Hai-jie, LAN Ji-wu, CHEN Yun-min, QIU Qing-wen, SHI Wei. Application and analysis of drainage well in landfill slip control[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 813-821. DOI: 10.11779/CJGE201705005
Citation: HE Hai-jie, LAN Ji-wu, CHEN Yun-min, QIU Qing-wen, SHI Wei. Application and analysis of drainage well in landfill slip control[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 813-821. DOI: 10.11779/CJGE201705005

排水竖井在垃圾填埋场滑移治理中的应用及效果分析  English Version

基金项目: 国家重点基础研究发展计划(“973”计划)项目(2012CB719800); 国家自然科学基金青年基金项目(41502276)
详细信息
    作者简介:

    何海杰(1987- ),男,浙江台州人,博士研究生,主要从事环境土工方面的研究。E-mail: he_haijie@zju.edu.cn。

    通讯作者:

    兰吉武,E-mail:lanjiwu@zju.edu.cn

  • 中图分类号: TU475

Application and analysis of drainage well in landfill slip control

  • 摘要: 垃圾填埋场滑移会造成严重的人员财产损失和环境污染,填埋场稳定控制和滑移的治理方法较为缺乏。在国内某失稳填埋场开展竖井排水滑移治理试验,监测治理前后的表面位移、深层位移、渗滤液水位和渗滤液导排量,评估滑移治理效果。并进一步利用Geo-Studio软件评估排水竖井不同导排时间、导排流量及布置方式时的稳定控制效果。结果表明:排水竖井使用后,填埋场最大滑移面积从监测总面积的68%降为17%,深层平均滑移速率从2.43 mm/d降为0.95 mm/d;10口排水竖井的最大导排流量279 m3/d,平均导排流量为164 m3/d;模拟分析表明,排水竖井工作时间越长,导排流量越大,堆体越快趋于稳定;在相同导排总量的条件下,布置3排竖井滑移治理效果优于布置1排和2排的效果,当布置2排时,排间距为10 m的效果优于排间距为20 m的效果。排水竖井滑移治理和稳定控制应用效果较好,可为填埋场堆体稳定控制提供参考。
    Abstract: Landfill slip will cause losses of lives and properties and serious environmental pollution. At present, the methods for stability of landfills are few. The drainage well to control the stability of the landfill at an instable landfill in China is investigated. The surface horizontal displacement, deep lateral displacement and leachate level are monitored to evaluate the method. The seepage and stability analysis software is used to analyze the effects of stability control of pumping time, pumping rate and arrangement. It is shown that after using this method the maximum slip area is reduced to 17% from the monitoring area of 68%, and the deep average slip rate is reduced to 0.95 mm/d from 2.43 mm/d. The maximum pumping rate of 10 drainage wells is 279 m3/d, and the average pumping rate is 164 m3/d. The simulation analysis shows that the longer the pumping time and the greater the pumping rate, the faster the landfill tends to be stable. Under the same flow rate, 3 rows are superior to the arrangements of 1 row and 2 rows in terms of slip control. Under the same row number of 2, the effectiveness of row spacing of 10 m is superior to that of 20 m. The proposed method has been proved to be successful in practice, and the application of drainage well may provide a successful example for control of the similar landfill slip.
  • [1] 陈云敏. 环境土工基本理论及工程应用[J].岩土工程学报, 2014, 36(1): 1-46. (CHEN Yun-min. A fundamental theory of environmental geotechnics and its application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 1-46. (in Chinese))
    [2] 刘毓氚, 李 琳, 贺怀建. 城市固体废弃物填埋场的岩土工程问题[J]. 岩土力学, 2002, 23(5): 618-621. (LIU Yu-chuan, LI Lin, HE Huai-jian. Investigation on geotechnical problems of municipal solid waste landfill[J]. Rock and Soil Mechanics, 2002, 23(5): 618-621. (in Chinese))
    [3] 詹良通, 管仁秋, 陈云敏, 等. 某填埋场垃圾堆体边坡失稳过程监测与反分析[J]. 岩石力学与工程学报, 2010, 29(8): 1697-1705. (ZHAN Liang-tong, GUAN Ren-qiu, CHEN Yun-ming, et al. Monitoring and back analyses of slope failure process at a landfill[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1697–1705. (in Chinese))
    [4] KOERNER R M, SOONG T Y. Stability assessment often large landfills failures[C]// Proceedings of Sessions of Geo Denver. Denver, 2000: 1-38.
    [5] QIANXue-de, KOERNER R M. Translation failure analysis of solid waste landfills including seismicity and leachate head calculations[R]. Pennsylvanian: Geosynthetic Research Institute, Drexel University, 2007.
    [6] QIAN Xue-de, KOERNER R M, GRAY D H. Geotechnical aspects of landfill design and construction[M]. New Jersey: Prentive Hall Inc, 2002.
    [7] REDDY K R, HETTIARACHCHI H, PARAKALLA NS, et al. Geotechnicalproperties of fresh municipal solid waste at Orchard Hills Landfill[J]. Waste Management 2009, 29(2): 952-959.
    [8] MACHADO S L, KARIMPOUR-FARD M, SHARIATMADARI N, et al. Evaluation of the geotechnical properties of MSW in two Brazilian landfills[J]. Waste Management, 2010, 30(12): 2579-2591.
    [9] ARIGALA S G, TSOTSIS T T, WEBSTER I A, et al. Gas generation, transport, and extraction in landfills[J]. Journal of Environmental Engineering, 1995, 121(1): 33-44.
    [10] NASTEV M, THERRIEN R, LEFEBVRE R. Gas production and migration in landfills and geological materials[J]. Journal of Contaminant Hydrology, 2001, 52(1/2/3/4): 187-211.
    [11] TINET A J, OXARANGO L. Stationary gas flow to a vertical extraction well in MSW landfill considering the effect of mechanical settlement on hydraulic properties[J]. Chemical Engineering Science, 2010, 65(23): 6229-6237.
    [12] TOWNSEND T G, WISE W R, JAIN P. One-dimensional gas flow model for horizontal gas collection systems at municipal solid waste landfills.[J]. Journal of Environmental Engineering, 2005, 131(12): 1716-1723.
    [13] ZHAN L T, LING D, ZHANG W J. Hydrogeological characterization of Suzhoulandfill of municipal solid wastes[C]// Proceedings of GeoCongress 2008, Geotechnics of Waste Management and Remediation, ASCE. Louisian, 2008: 48-55.
    [14] BREIMEYER R J, BENSON C H. Measurement of unsaturated hydraulic properties of municipal solid waste[C]// Geo-Frontiers 2011: Advances in Geotechnical Engineering, ASCE. Texas, 2011: 1433-1442.
    [15] KAVAZANJIAN E, BEECH J F, MATASOVIC N. Municipal solid waste slope failure: I waste and foundation soil properties[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(9): 812-813.
    [16] 詹良通, 罗小勇, 陈云敏, 等. 垃圾填埋场边坡稳定安全监测指标及警戒值[J]. 岩土工程学报, 2012, 34(7): 1305-1312. (ZHAN Liang-tong, LUO Xiao-yong, CHEN Yun-ming, et al. Field monitoring items and warning values for slope safety of MSW landfills[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1305-1312. (in Chinese))
    [17] 何海杰, 兰吉武, 陈云敏, 等. 西北地区某填埋场堆体滑移过程监测与分析[J]. 岩土工程学报, 2015, 37(9): 1721-1726. (HE Hai-jie, LAN Ji-wu, CHEN Yun-ming, et al. Monitoring and analysis of slope slip process at a landfill in Northwest China[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1721-1726. (in Chinese))
    [18] 陈云敏, 兰吉武, 李育超, 等. 垃圾填埋场渗沥液水位壅高及工程控制[J]. 岩石力学与工程学报, 2014, 31(1): 154-163. (CHEN Yun-ming, LAN Ji-wu, LI Yu-chao, et al. Development and contral of leachate mound in MSW landfills[J]. Chinese Journal of Rock Mechanics and Engineering, 2014(1): 154-163. (in Chinese))
    [19] BENSON C H, PLISKA R J. Final covers: HELP needs help form the field[J]. Waste Age, 1996, 27(3): 89-98.
    [20] XU Qi-yong, TOLAYMAT, TOWNSEND T. Impact of pressurized liquidsaddition on landfill slope stability[J]. Journal of Geotechnical andGeoenvironmental Engineering, 2012, 138(4): 472-480.
    [21] JAIN P, POWELL J, TOWNSEND T G, et al. Estimating the hydraulic conductivity of landfilled municipal solid waste using borehole permeameter test[J]. Journal of Environmental Engineering, 2006, 132(6): 645-653.
    [22] KRAHN J. Seepage modeling with SEEP/W: an engineering methodology[M]. 2nd Ed. Calgary: GEO-SLOPE Int, 2007.
    [23] GASMO J M, RAHARDJO H, LEONG E C. Infiltration effectson stability of a residual soil slope[J]. Computers and Geotechnics, 2000, 26(2): 145-165.
    [24] WAN Y, KWONG J. Shear strength of soils containing amorphousclay-size materials in a slow-moving landslide[J]. Engineering Geology, 2002, 65(4): 293-303.
    [25] CROSTA G B, CHEN H, FRATTINI P. Forecasting hazard scenariosand implications for the evaluation of countermeasure efficiencyfor large debris avalanches[J]. Engineering Geology, 2006, 83(1/2/3): 236-253.
    [26] ZHANG Wen-jie, ZHANG Gai-ge, CHEN Yun-min. Analyses on a high leachate mound in a landfill of municipal solid waste in China[J]. Environmental Earth Sciences, 2013, 70(4): 1747-1752.
    [27] CJJ 176—2012 生活垃圾卫生填埋场岩土工程技术规范[S]. 2012. (CJJ 176—2012 Technical code for geotechnical engineering of municipal solid waste sanitary landfill[S]. 2012. (in Chinese))
计量
  • 文章访问数:  349
  • HTML全文浏览量:  2
  • PDF下载量:  260
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-13
  • 发布日期:  2017-05-24

目录

    /

    返回文章
    返回