• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于热力学理论的超固结黏土边界面模型

陈艳妮, 杨仲轩

陈艳妮, 杨仲轩. 基于热力学理论的超固结黏土边界面模型[J]. 岩土工程学报, 2017, 39(3): 547-553. DOI: 10.11779/CJGE201703020
引用本文: 陈艳妮, 杨仲轩. 基于热力学理论的超固结黏土边界面模型[J]. 岩土工程学报, 2017, 39(3): 547-553. DOI: 10.11779/CJGE201703020
CHEN Yan-ni, YANG Zhong-xuan. Thermodynamics-based bounding surface model for overconsolidated clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 547-553. DOI: 10.11779/CJGE201703020
Citation: CHEN Yan-ni, YANG Zhong-xuan. Thermodynamics-based bounding surface model for overconsolidated clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 547-553. DOI: 10.11779/CJGE201703020

基于热力学理论的超固结黏土边界面模型  English Version

基金项目: 国家自然科学基金项目(51322809,51578499); 浙江省教育厅项目(N20110091)
详细信息
    作者简介:

    陈艳妮(1991- ),女,硕士研究生,主要从事土体本构方面的研究。E-mail: ceynchen@zju.edu.cn。

    通讯作者:

    杨仲轩,E-mail:zxyang@zju.edu.cn

Thermodynamics-based bounding surface model for overconsolidated clay

  • 摘要: 基于热力学理论和临界状态土力学的框架,建立了耗散应力空间内的α-β屈服面。定义耗散势和背应力为应力的函数来实现在真实应力空间非相关联流动。基于边界面模型框架,准确模拟了超固结黏土在初始屈服面内的弹塑性响应。采用临界状态线与边界面交点在静水压力轴上的投影为映射中心,并定义剪胀函数,保证了“干侧”发生剪胀,而“湿侧”发生剪缩。与Boston Blue Clay,Lower Cromer Till和London Clay 3种土在不排水条件下的三轴试验数据进行对比,验证了模型的合理性和有效性。
    Abstract: Based on the framework of thermodynamics and critical state soil mechanics, a new α-β yield surface is formulated in the triaxial space. Based on the non-associated flow rule and bounding surface framework, the proposed model can simulate the correct elastoplastic responses within its initial yield surface for overconsolidated clay. By defining the dissipative function and back stress being functions of stress, the non-associated flow is naturally followed in the true stress space. The mapping center in the p-q space is selected as the projection on the hydrostatic axis of the intersection of critical state line and bounding surface, such that the contractive response on the ‘wet side’ and dilative response on the ‘dry side’ can be guaranteed if an appropriated dilatancy function is defined. Comparisons are made between the experimental data of three typical clays under undrained condition, and a full agreement indicates the simulative capability of the proposed model.
  • [1] ROSCOE K H, BURLAND J B. On the generalized stress-strain behaviour of ‘wet’ clay[M]// Engineering Plasticity, HEYMAN J, LECKIE F A, eds, 1968: 535-609.
    [2] DAFALIAS Y, HERRMANN L R. Bounding surface formulation of soil plasticity[M]// Soil Mechanics, Cyclic & Transient Loads, PANDE G N, ZIENKIEWICZ O C, eds, 1982: 253-282.
    [3] DAFALIAS Y. Bounding surface plasticity. I: mathematical foundation and hypoplasticity[J]. Journal of Engineering Mechanics, 1986, 112: 966-987.
    [4] DAFALIAS Y. Bounding surface plasticity. II: application to isotropic cohesive soils[J]. Journal of Engineering Mechanics, 1986, 112: 1263-1291.
    [5] PREVOST J H. Plasticity theory for soil stress-strain behavior[J]. Proceedings of the American Society of Civil Engineers, Journal of the Engineering Mechanics Division, 1978, 104(5): 1177-1194.
    [6] AL-TABBAA A, WOOD D M. An experimentally based ‘bubble’ model for clay[C]// Proceedings of International Conference of Numerical models in Geomechanics NUMOG 3. Niagara Falls, Canada, 1989: 91-99.
    [7] EINAV I, PUZRIN A M, HOULSBY G T. Continuous hyperplastic models for overconsolidated clays[J]. Proceedings of Symposium on Mathematical Models in Geomechanics, 2000, 37(5/6): 515-523.
    [8] WHITTLE A J, KAVVADAS M J. Formulation of MIT-E3 constitutive model for overconsolidation clays[J]. Journal of Geotechnical Engineering, 1994, 120: 173-198.
    [9] LING H I, YUE D Y, KALIAKIN V N, et al. Anisotropic elastoplastic bounding surface model for cohesive soils[J]. Journal of Engineering Mechanics, 2002, 128: 748-758.
    [10] 魏 星, 黄茂松. 黏土的各向异性边界面模型[J]. 水利学报, 2006, 37(7): 831-837. (WEI Xing, HUANG Mao-song. Anisotropic bounding surface model for clay[J]. Chinese Journal of Hydraulic Engineering, 2006, 37(7): 831-837. (in Chinese))
    [11] 黄茂松, 刘 明, 柳艳华. 循环荷载下软黏土的各向异性边界面模型[J]. 水利学报, 2009, 40(2): 188-200. (HUANG Mao-song, LIU Ming, LIU Yan-hua. Anisotropic bounding surface model for soft clay under cyclic loading[J]. Chinese Journal of Hydraulic Engineering, 2009, 40(2): 188-200. (in Chinese))
    [12] YAO Y P, HOU W, ZHOU A N. UH model: three- dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469.
    [13] 姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193-217. (YAO Yang-ping. Advanced UH models for soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193-217. (in Chinese))
    [14] 姚仰平, 侯 伟,罗 汀. 土的统一硬化模型[J]. 岩石力学与工程学报, 2009, 28(10): 2135-2151. (YAO Yang-ping, HOU Wei, LUO Ting. Unified hardening models for soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2135-2151. (in Chinese))
    [15] 罗 汀. 土的本构关系[M]. 北京: 人民交通出版社, 2010. (LUO Ting. Soil constitutive models[M]. Beijing: China Communication Press, 2010. (in Chinese))
    [16] COLLINS I F, HILDER T. A theoretical framework for constructing elastic/plastic constitutive models of triaxial tests[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26: 1313-1347.
    [17] GAO Z W, ZHAO J D. Modeling the dilatancy of overconsolidated clay[C]// Constitutive Modeling of Geomaterials. Berlin, 2013: 541-545.
    [18] PESTANA J M, WHITTLE A J, GENS A. Evaluation of a constitutive model for clays and sands: Part II - clay behaviour[J]. International Journal for Numerical and Analytical Method in Geomechanics, 2002, 26: 1123-1146.
    [19] GENS A. Stress-strain and strength characteristics of a low plasticity clay[D]. London: University of London (Imperial College of Science and Technology), 1982.
    [20] GASPARRE A. Advanced laboratory characterisation of London Clay[D]. London: Imperial College London, 2005.
    [21] 李相崧. 饱和土弹塑性理论的数理基础-纪念黄文熙教授[J]. 岩土工程学报, 2013, 35(1): 1-33. (LI Xiang-song. Physical and mathematical bases of elastoplastic theories on saturated soils-In memory of Professor HUANG Wen-xi[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 1-33. (in Chinese))
    [22] LI X S. Thermodynamics-based constitutive framework for unsaturated soils. I: theory[J]. Géotechnique, 2007, 57(5): 411-422.
    [23] ZIEGLER H. An introduction to thermomechanics[M]. 2nd ed. Amsterdam: North-Holland, 1983.
    [24] YAN W M, LI X S. A model for natural soil with bonds[J]. Géotechnique, 2010, 61(2): 95-106.
    [25] COLLINS I F, KELLY P A. A thermomechanical analysis of a family of soil models[J]. Géotechnique, 2002, 52(7): 507-518.
    [26] 孔 亮, COLLINS I F. 模拟土体本构特性的热力学方法[J]. 岩土力学, 2008, 29(7): 1732-1740. (KONG Liang, COLLINS I F. Thermomechanical approach to modelling constitutive behaviors of geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2008, 29(7): 1732-1740. (in Chinese))
    [27] LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460.
    [28] LI X S. A sand model with state-dependent dilatancy[J]. Géotechnique, 2002, 52(3): 173-186.
  • 期刊类型引用(5)

    1. 唐清枫,徐真,孙亚楼,张奇,谭琪,潘多强,吴王锁. 黏土矿物-生物复合胶体影响放射性核素迁移行为与机理研究进展. 核化学与放射化学. 2025(01): 1-16 . 百度学术
    2. 吴鹏,王驹,凌辉,周志超,段佳欣,李南,段先哲. 甘肃北山新场深部地下水中铀的赋存形态及其影响因素的地球化学模拟研究. 原子能科学技术. 2024(05): 1007-1016 . 百度学术
    3. 田云婷,谭凯旋,李咏梅,李春光,唐治鹏,李小杰. 还原条件下膨润土胶体稳定性研究. 南华大学学报(自然科学版). 2024(03): 47-52 . 百度学术
    4. 邹威燕,周书葵,段毅. 不同地层中放射性核素迁移模型. 有色金属(冶炼部分). 2022(01): 79-87 . 百度学术
    5. 朱帅润,李绍红,何博,吴礼舟. 改进的Picard法在非饱和土渗流中的应用研究. 岩土工程学报. 2022(04): 712-720 . 本站查看

    其他类型引用(8)

计量
  • 文章访问数:  481
  • HTML全文浏览量:  4
  • PDF下载量:  519
  • 被引次数: 13
出版历程
  • 收稿日期:  2015-12-20
  • 发布日期:  2017-04-24

目录

    /

    返回文章
    返回