Experimental study on self-weight consolidation behavior of hydraulically dredged slurries
-
摘要: 大变形自重固结理论可广泛应用于堆场设计和堆场吹填淤泥处理等方面,但对于沉积柱试验中淤泥的自重固结性质,尤其是非线性压缩关系和非线性渗透关系,并没有进行详细深入地研究。利用研制的沉积固结试验方法研究了太湖和白马湖吹填淤泥的自重固结性质。该方法由沉积柱、孔隙水压力测试装置和分层真空取样装置组成,利用该方法可得到淤泥自重固结过程中泥水界面、超静孔隙水压力、密度、有效应力、颗粒分布、压缩关系和渗透关系等参数的变化规律。压缩关系试验结果表明:两种淤泥压缩关系是非线性的。在较低的有效应力时随有效应力的增大孔隙比迅速减小,在较高的有效应力时随有效应力的增大孔隙比减小趋势趋缓。存在一个有效应力的分界点,低于此点不同时间时有效应力与孔隙比的关系较为分散,此时淤泥的压缩性很大,高于此点不同时间时有效应力与孔隙比的关系可认为是唯一的。两种淤泥渗透关系是非线性的。淤泥的非线性压缩关系和渗透关系可采用幂函数关系。Abstract: The large-strain self-weight consolidation theory is widely used for the design of dredged material disposal sites and the treatment of hydraulically dredged slurries in the disposal sites. The self-weight consolidation behavior of hydraulically dredged slurries in settling column experiments, especially nonlinear compressibility relationship and nonlinear permeability relationship, is still unclear. The self-weight consolidation behavior of hydraulically dredged slurries from Taihu Lake and Baimahu Lake is studied by using a new sedimentation and consolidation experimental method which consists of a settling column, a pore pressure measurement apparatus and a multi-layer vacuum extraction sampling apparatus. It can test the changing rules of the interface height, excess pore pressure, density, effective stress, grain size distribution, compressibility relationship and permeability relationship in self-weight consolidation. The experimental results show that the compressibility relationship is nonlinear. Under low effective stresses, the void ratio changes significantly with a small increase in the effective stress, while under higher values of effective stress, change of void ratio with effective stress is more limited. When values of effective stress are greater than one value, a unique relationship is visible, and when the stresses are below this value, the data points cover a triangular shaped area, so the compressibility is large. The permeability relationship is nonlinear. The compressibility relationship and permeability relationship can be represented by a power function equation.
-
[1] BEEN K. Stress-strain behaviour of a cohesive soil deposited under water[D]. Oxford: University of Oxford, 1980. [2] BOWDEN R K. Compression behaviour and shear strength characteristics of a natural silty clay sedimented in the laboratory[D]. Oxford: University of Oxford, 1988. [3] ALEXIS A, LEBRAS G, THOMAS P. Experimental bench for study of settling-consolidation soil formation[J]. Geo- technical Testing Journal, 2004, 27(6): 557-567. [4] TOORMAN E A. Sedimentation and self-weight consolidation: general unifying theory[J]. Géotechnique, 1996, 46(1): 103-113. [5] MERCKELBACH L M. Consolidation and strength evolution of soft mud layers[D]. Delft: Delft University of Technology, 2000. [6] NAM S, GUTIERREZ M, DIPLAS P. Channeling during settling and self-weight consolidation of cohesive sediments[J]. Canadian Geotechnical Journal, 2006, 45(6): 867-576. [7] IMAI G. Experimental studies on sedimentation mechanism and sediment formation of clay materials[J]. Soils and Foundations, 1981, 21(1): 7-20. [8] WANG Liang, ZHU Wei, XIE Jian, et al. Study on shear strength of sediments in main sedimentation stages[J]. Marine Georesources & Geotechnology, 2015, 33: 556-566. [9] GIBSON R E, ENGLAND G L, HUSSEY M J L. The theory of one-dimensional consolidation of saturated clays. I finite non-linear consolidation of thin homogeneous layers[J]. Géotechnique, 1967, 17: 261-273. [10] 詹良通, 童 军, 徐 洁. 吹填土自重沉积固结特性试验研究[J]. 水利学报, 2009, 38(2): 201-205. (ZHAN Liang-tong, TONG Jun, XU Jie. Laboratory study on self weight sedimentation and consolidation behaviors of hydraulic dredged mud[J]. Chinese Journal of Hydraulic Engineering, 2009, 38(2): 201-205. (in Chinese)) [11] 刘 莹, 肖树芳, 王 清. 吹填土室内模拟试验研究[J]. 岩土力学, 2004, 25(4): 518-528. (LIU Ying, XIAO Shu-fang, WANG Qing. Research on indoor scale-down test of dredger fill[J]. Rock and Soil Mechanics, 2004, 25(4): 518-528. (in Chinese)) [12] 曹玉鹏, 吉 锋. 吹填淤泥沉积规律室内试验[J]. 水利水电科技进展, 2011, 31(3): 36-39. (CAO Yu-peng, JI Feng. Model tests on sedimentation behavior of dredged sludge[J]. Advances in Science and Technology of Water Resources, 2011, 31(3): 36-39. (in Chinese)) [13] BUTTERFIELD R. A natural compression law for soils[J]. Géotechnique, 1979, 29(4): 469-480. [14] BARTHOLOMEEUSEN G. Compound shock waves and creep behaviour in sediment beds[D]. Oxford: University of Oxford, 2003. [15] MESRI G, OLSON R E. Mechanisms controlling the permeability of clays[J]. Clay and Clay Mineral, 1971, 19(3): 151-158. [16] TAYLOR D W. Fundamental of soil mechanics[M]. New York: John Wiley & Sons Inc, 1948, 700p. [17] IMAI G, TANG Y X. A constitutive equation of one dimensional consolidation derived from inter-connected tests[J]. Soils and Foundations, 1992, 32(2): 83-96. -
期刊类型引用(11)
1. 吕宏强,唐天成,包晨宇. 基于光滑粒子流体动力学法的流固共轭自然对流传热数值模拟. 航空学报. 2025(05): 180-196 . 百度学术
2. 付永帅. 基于机器视觉的水利枢纽工程生态脆弱区地基渗流仿真分析. 水利规划与设计. 2024(01): 89-93+102 . 百度学术
3. 高玉峰,王玉杰,张飞,姬建,陈亮,倪钧钧,张卫杰,宋健,杨尚川. 边坡工程与堤坝工程研究进展. 土木工程学报. 2024(08): 97-118 . 百度学术
4. 张德沧,毛佳,戴妙林,邵琳玉,赵兰浩. 圆化离散单元法的改进及其在岩体断裂过程中的应用. 岩土工程学报. 2024(09): 1974-1983 . 本站查看
5. 黄帅,刘传正,GODA Katsuichiro. 光滑粒子流体动力学方法在饱和边坡地震滑移大变形中的适用性研究. 岩土工程学报. 2023(02): 336-344+443 . 本站查看
6. 桂滨,林岩松,关彦斌. 高压浆液挤压饱和土体变形模拟的SPH方法. 公路交通科技. 2023(03): 51-57 . 百度学术
7. 王占彬,张卫杰,张健,代登辉,高玉峰. 基于并行SPH方法的地震滑坡对桥桩的冲击作用. 湖南大学学报(自然科学版). 2022(07): 54-65 . 百度学术
8. 张卫杰,余瑞华,陈宇,高玉峰,黄雨. 强度指标影响下滑坡运动特征及参数反分析. 岩土工程学报. 2022(12): 2304-2311 . 本站查看
9. 戴轩,郑刚,程雪松,霍海峰. 基于DEM-CFD方法的基坑工程漏水漏砂引发地层运移规律的数值模拟. 岩石力学与工程学报. 2019(02): 396-408 . 百度学术
10. 杜彬,邱兆勇. 防渗墙技术在堤坝施工中的应用. 水利科学与寒区工程. 2019(02): 123-125 . 百度学术
11. 张卫杰,郑虎,王占彬,高玉峰. 基于三维并行SPH模型的土体流滑特性研究. 工程地质学报. 2018(05): 1279-1284 . 百度学术
其他类型引用(6)