• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于混凝土不均匀性面板堆石坝面板损伤分析

徐斌, 刘小平, 邹德高, 孔宪京, 余翔

徐斌, 刘小平, 邹德高, 孔宪京, 余翔. 基于混凝土不均匀性面板堆石坝面板损伤分析[J]. 岩土工程学报, 2017, 39(2): 366-372. DOI: 10.11779/CJGE201702022
引用本文: 徐斌, 刘小平, 邹德高, 孔宪京, 余翔. 基于混凝土不均匀性面板堆石坝面板损伤分析[J]. 岩土工程学报, 2017, 39(2): 366-372. DOI: 10.11779/CJGE201702022
XU Bin, LIU Xiao-ping, ZOU De-gao, KONG Xian-jing, YU Xiang. Slab damage of concrete face rockfill dam based on heterogeneity of concrete[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 366-372. DOI: 10.11779/CJGE201702022
Citation: XU Bin, LIU Xiao-ping, ZOU De-gao, KONG Xian-jing, YU Xiang. Slab damage of concrete face rockfill dam based on heterogeneity of concrete[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 366-372. DOI: 10.11779/CJGE201702022

基于混凝土不均匀性面板堆石坝面板损伤分析  English Version

基金项目: 国家自然科学基金重大研究计划集成项目(91215301); 国家自然科学基金项目(51379028,51379028,51508071)
详细信息
    作者简介:

    徐 斌(1981- ),男,博士,副教授,主要从事高土石坝抗震和岩土地震工程等方面的教学和科研。E-mail:xubin@dlut.edu.cn。

Slab damage of concrete face rockfill dam based on heterogeneity of concrete

  • 摘要: 将混凝土面板堆石坝中面板混凝土视为宏观上均质、细观上不均匀的材料,结合统计学原理,考虑材料参数分布的随机性,通过二维有限元数值分析,研究了混凝土的弹性模量和抗拉强度随机性对面板堆石坝面板动力损伤分布规律的影响。计算结果表明:不考虑面板混凝土材料参数随机性时,(0.65~0.85)HH为坝高)处面板顺坡向应力较大,拉损伤主要发生在0.8HH为坝高)附近的面板处;随着混凝土材料不均匀性增大,发生拉损伤的部位趋于分散,但主要集中在(0.4~0.9)H范围内的面板。因此这部分面板应该是抗震设计的重点区域。采用混凝土弹脆性细观损伤模型,考虑材料参数的随机性,能够直观地阐明混凝土面板的地震破坏过程和损伤分布,便于了解面板薄弱环节,研究成果可以为混凝土面板堆石坝抗震设计提供参考。
    Abstract: Considering the heterogeneity characteristics of concrete materials, the method of the mesoscopic mechanics is used to investigate the dynamic damage of slabs of concrete face rockfill dam (CFRD) combined with the statistical principle. The mechanical properties, including the elastic modulus and tensile strength, of concrete are assumed to conform to the Weibull distribution law. The elastic-brittle damage model is adopted to simulate the whole deformation and failure process for concrete on a meso-scale through 2D finite element analysis. The results show that the maximum slop-direction tensile stresses in the slabs mainly occur at the height of 0.65 H to 0.85H (H is the height of the dam), and the tensile damage of slabs mainly occur at the height of 0.8H when the randomness of concrete materials is neglected. With the decrease of homogeneity index, the region of the dynamic damage of slabs is scattered, but it is mainly concentrated at the height of 0.4H to 0.9H. Thus, this part of the slab should be the key area of seismic design for CFRD. The micromechanical damage model for concrete can reflect the damage process of slabs precisely. The research may provide guidance for the seismic design of CFRD.
  • [1] ZHANG C. Challenges of high dam construction to computational mechanics[J]. Frontiers of Architecture and Civil Engineering in China, 2007, 1(1): 12-33.
    [2] BAZANT Z, TABBARA M, PIJAUDIER-CABOT G. Random particle model for fracture of aggregate or fiber composites[J]. Journal of Engineering Mechanics, 1990, 116(8): 1686-1705.
    [3] 武明鑫, 张楚汉, 王进廷. 基于细观颗粒元的混凝土弯曲试验模拟与率效应[J]. 清华大学学报 (自然科学版), 2014, 54(8): 999-1005. (WU Ming-xin, ZHANG Chu-han, WANG Jin-ting. Simulations of concrete bending and rate effects based on meso-scaled particle elements[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(8): 999-1005. (in Chinese))
    [4] TANG C A. Numerical simulation of progressive rock failure and associated seimicity[J]. Rock Mechanics, 1997, 34(2): 249-261.
    [5] ZHU W, TANG C A. Numerical Simulation on shear fracture process of concrete using mesoscopic mechanical mode[J]. Construction and Building Materials, 2001, 16(8): 453-63.
    [6] ZHONG H, LIN G, LI X Y, et al. Seismic failure modeling of concrete dams considering heterogeneity of concrete[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(12):1678-1689.
    [7] 唐欣薇, 周元德, 张楚汉. 考虑空间相关尺度特征的细观力学模型及其应用[J]. 岩土力学, 2012, 33(7): 2021-2026. (TANG Xin-wei, ZHOU Yuan-de, ZHANG Chu-han. A mesomechanical model with spatial correlation scale character and its application[J]. Rock and Soil Mechanics, 2012, 33(7): 2021-2026. (in Chinese))
    [8] TANG X, ZHOU Y, ZHANG C, et al. Study on the heterogeneity of concrete and its failure behavior using the equivalent probabilistic model[J]. Journal of Materials in Civil Engineering, 2010, 23(4): 402-413.
    [9] 田 威, 党发宁, 陈厚群. 基于细观损伤的混凝土破裂过程的三维数值模拟与CT试验验证[J]. 岩土力学, 2010, 31(增刊2): 428-433. (TIAN Wei, DANG Fa-ning, CHEN Hou-qun. 3D numerical simulation of concrete failure process and CT verification based on meso-damage[J]. Rock and Soil Mech, 2010, 31(S2): 428-433. (in Chinese))
    [10] 张娟霞. 混凝土结构破坏机理的数值试验研究[D]. 沈阳: 东北大学, 2006. (ZHANG Juan-xia. Numerical investigation on failure mechanisms of concrete structures[D]. Shenyang: Northeastern University, 2006. (in Chinese))
    [11] 纪洪广, 蔡美峰. 混凝土材料断裂过程中声发射空间自组织演化特征及其在结构失稳预报中的应用[J]. 土木工程学报, 2001, 34(5): 15-19. (JI Hong-guang, CAI Mei-feng. Application of acoustic emission technique to predict unstable fracture in concrete[J]. China Civil Engineering Journal, 2001, 34(5): 15-19. (in Chinese))
    [12] PASTOR M, ZIENKIEWICZ O C, LEUNG K H. Simple model for transient soil loading in earthquake analysis. II: non-associative models for sands [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1985, 9(5): 477-498.
    [13] ZOU D G, XU B, KONG X J, et al. Numerical simulation of the seismic response of the Zipingpu concrete face rockfill dam during the Wenchuan earthquake based on a generalized plasticity mode[J]. Computers and Geotechnics, 2013, 49(4): 111-122.
    [14] XU B, ZOU D G, LIU H B. Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model[J]. Computers and Geotechnics, 2012, 43(6): 143-154.
    [15] LIU H, LING H I. Constitutive description of interface behavior including cyclic loading and particle breakage within the framework of critical state soil mechanics[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(1): 1495-1514.
    [16] LIU J M, ZOU D G, KONG X J. A 3D state dependent model of soil structure interface for monotonic and cyclic loadings[J]. Computers and Geotechnics, 2014, 61(9): 166-177.
    [17] 孔宪京, 邹德高. 紫坪铺面板堆石坝震害分析与数值模拟[M]. 北京: 科学出版社, 2014. (KONG Xian-jing, ZOU De-gao. Zipingpu CFRD seismic damage analysis and numerical simulation[M]. Beijing: Science Press, 2014. (in Chinese))
    [18] XU B, ZOU D G, KONG X J. Dynamic damage evaluation on the slbs of the concrete faced rockfill dam with the plastic-damage model[J]. Computers and Geotechnics, 2015, 65(4): 258-265.
    [19] DL5073—2000混凝面板堆石坝设计规范[S]. 北京: 中国电力出版社, 2011. (DL5073—2000 Specifications for seismic design of hydraulic structures[S]. Beijing: China WaterPower Press, 2000. (in Chinese))
    [20] 孔宪京, 徐 斌, 邹德高. 混凝土面板坝面板动力损伤有限元分析[J] . 岩土工程学报, 2014, 36(9): 1594-1600. (KONG Xian-jing, XU Bin, ZOU De-gao. Finite element dynamic analysis for seismic damage of slabs of CFRD[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1594-1600. (in Chinese))
  • 期刊类型引用(16)

    1. 孙冠华,王娇,于显杨,易琪,朱开源,王章星,耿璇,屈杰. 压缩空气储能电站地下内衬硐库基本原理与分析方法研究进展. 岩土力学. 2025(01): 1-25 . 百度学术
    2. 傅丹,伍鹤皋,李鹏,张米高杨. 压气储能地下洞室密封钢衬-围岩之间循环接触传力行为的数值模拟. 太阳能学报. 2025(03): 25-33 . 百度学术
    3. 蒋中明,甘露,张登祥,肖喆臻,廖峻慧. 压气储能地下储气库衬砌裂缝分布特征及演化规律研究. 岩土工程学报. 2024(01): 110-119 . 本站查看
    4. 阮泉泉,张文,张彬,王其宽,王汉勋,时广升. 不同洞距下内衬式高压储气库热-力特性分析. 隧道与地下工程灾害防治. 2024(01): 73-83 . 百度学术
    5. 刘钦节,陈强,付强,吴犇牛,杨卿干. 过断层压气储能巷道围岩变形特征与支护优化. 安徽理工大学学报(自然科学版). 2024(02): 67-74 . 百度学术
    6. 杨雪雯,任灏,廖泽球,王金玺,贾斌. 压缩空气储能地下人工洞室研究现状与展望. 南方能源建设. 2024(04): 54-64 . 百度学术
    7. 贾宁,刘顺,王洪播. 压缩空气储能人工硐库热力耦合解析方法研究. 岩土力学. 2024(08): 2263-2278+2289 . 百度学术
    8. 周小松,闫磊,黄康康,孙高博,刘卫. 圆形截面隧道式储气库群布局参数研究. 地下空间与工程学报. 2024(S1): 205-212 . 百度学术
    9. 张国华,相月,王薪锦,熊峰,唐志成,华东杰. 压气储能地下内衬储气库结构荷载分担解析解及影响因素分析. 岩石力学与工程学报. 2024(S2): 3633-3650 . 百度学术
    10. 蒋中明,刘宇婷,陆希,杨雪,廖峻慧,刘琛智,黄湘宜,周婉芬,石兆丰,田湘. 压气储能内衬硐室储气关键问题与设计要点评述. 岩土力学. 2024(12): 3491-3509 . 百度学术
    11. 张国华,王薪锦,相月,潘佳,熊峰,华东杰,唐志成. 压缩空气硬岩储库关键问题研究进展:气密性能、热力过程与稳定性. 岩石力学与工程学报. 2024(11): 2601-2626 . 百度学术
    12. 张国华,王薪锦,柯洪,相月,郭辉,熊峰,华东杰. 压气储能地下内衬储气库运行压力区间确定方法. 岩石力学与工程学报. 2024(12): 2874-2891 . 百度学术
    13. 邓申缘,姜清辉,位伟. 基于循环硬化模型的压气硐库围岩力学及变形分析. 岩石力学与工程学报. 2024(12): 2980-2991 . 百度学术
    14. 蔚立元,弭宪震,胡波文,李树忱,刘日成,叶继红. 内衬式岩洞储氢三维热-流-固耦合模型及洞群运营稳定性分析. 中国矿业大学学报. 2024(06): 1099-1116 . 百度学术
    15. 杨雪雯. 压气储能电站地下人工洞室上覆岩体抗抬稳定影响因素分析. 内蒙古电力技术. 2024(06): 8-13 . 百度学术
    16. 周小松,闫磊,黄康康,王颖蛟,申律. 圆形截面隧道式地下储气库容量研究. 科技创新与应用. 2023(30): 72-75 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 25
出版历程
  • 收稿日期:  2015-11-18
  • 发布日期:  2017-03-24

目录

    /

    返回文章
    返回