• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

层状横观各向同性地基中埋置刚性基础的平面外动力刚度系数

巴振宁, 梁建文, 胡黎明

巴振宁, 梁建文, 胡黎明. 层状横观各向同性地基中埋置刚性基础的平面外动力刚度系数[J]. 岩土工程学报, 2017, 39(2): 343-351. DOI: 10.11779/CJGE201702019
引用本文: 巴振宁, 梁建文, 胡黎明. 层状横观各向同性地基中埋置刚性基础的平面外动力刚度系数[J]. 岩土工程学报, 2017, 39(2): 343-351. DOI: 10.11779/CJGE201702019
BA Zhen-ning, LIANG Jian-wen, HU Li-ming. Anti-plane dynamic stiffness coefficient of a rigid foundation embedded in a multi-layered TI ground[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 343-351. DOI: 10.11779/CJGE201702019
Citation: BA Zhen-ning, LIANG Jian-wen, HU Li-ming. Anti-plane dynamic stiffness coefficient of a rigid foundation embedded in a multi-layered TI ground[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 343-351. DOI: 10.11779/CJGE201702019

层状横观各向同性地基中埋置刚性基础的平面外动力刚度系数  English Version

基金项目: 国家自然科学基金项目(51578373,51578372)
详细信息
    作者简介:

    巴振宁(1980- ),男,副教授,博士,主要从事地震工程研究。E-mail: bazhenning_001@163.com。

    通讯作者:

    梁建文,E-mail:Liang@tju.edu.cn

Anti-plane dynamic stiffness coefficient of a rigid foundation embedded in a multi-layered TI ground

  • 摘要: 采用间接边界元方法(IBEM)求解了层状横观各向同性(TI)地基中埋置刚性基础的平面外动力刚度系数。首先将层状TI地基与埋置刚性基础的交界面采用线边界单元离散,然后求解层状TI半空间中斜线均布荷载动力格林影响函数,最后由刚性基础与层状TI地基确立的混合边界条件求得动力刚度系数。通过与各向同性地基中基础动力刚度系数的比较验证了方法的正确性,进而以均质TI地基、单一TI土层地基和多TI土层地基中埋置刚性基础模型为例进行了数值计算分析,讨论了土体的TI性质对动力刚度系数的影响。研究表明层状TI地基与均质TI地基中埋置基础的动力刚度系数有着本质的差异;单一TI土层地基中基础动力刚度系数的峰值频率由TI土层的竖向剪切模量决定,而峰值则由水平剪切模量决定;多TI土层地基中基础的动力刚度系数与其等效单一TI土层地基中基础的动力刚度系数亦有着显著的差异,且这种差异又与土层的排列次序有关。
    Abstract: The anti-plane dynamic stiffness coefficient of a rigid foundation embedded in a multi-layered transversely isotropic (TI) ground is obtained by using the indirect boundary element method (IBEM). Firstly, the interface of the rigid foundation is discretized into line boundary elements. Then, the dynamic Green’s functions for uniformly distributed loads acting on an inclined line are solved. Finally, the dynamic stiffness coefficient of the rigid foundation is determined through the mixed boundary conditions between the foundation and the layered TI foundation. The accuracy of the method is verified by comparing results with the dynamic stiffness coefficients of rigid foundation embedded in an isotropic foundation. The rigid foundations embedded in a uniform TI foundation, in a single TI layer foundation and also in a multi-layered TI foundation are numerically calculated, and the effects of TI parameters on the dynamic stiffness coefficient are studied. The numerical results show that the dynamic stiffness coefficient in the layered TI foundation is significantly different from that in the uniform TI foundation. For the single layered TI foundation, the peak frequency of the dynamic stiffness coefficient is determined by the shear modulus in the vertical direction, while the peak value is determined by the shear modulus in the horizontal direction. The dynamic stiffness coefficient of the multi-layered foundation is obviously different form that of the single layered TI foundation, and these differences are in turn related to the ordering of the TI layers.
  • [1] REISSNER E. Stationare axialsymmetriche durch eine Schtlttelnde Masse erregte Schwingungeneines homogenen elastichen Halbraumes[J]. Ing.-Archiv, 1936, 7(6): 381-396.
    [2] CHANG C C. Dynamic response of an elastic half-space to tangential surface loadings[J]. Journal of Applied Mechanics, 1960, 27: 559-567.
    [3] LUCO J E, WESTMANN R A. Dynamic response of circular footings[J]. Journal of the Engineering Mechanics Division, ASCE, 1971, 97: 1381-1395.
    [4] CHEN S L, CHEN L Z, ZHANG J M. Dynamic response of a flexible plate on saturated soil layer[J]. Soil Dynamics & Earthquake Engineering, 2006, 26: 647-647.
    [5] CAI Y Q, XU C J, ZHENG Z F, et al. Vertical vibration analysis of saturated soil[J]. Applied Mathematics and Mechanics, 2006, 27: 75-81.
    [6] WONG H L, LUCO J E. Dynamic response of rigid foundations of arbitrary shape[J]. Earthquake & Engineering Structural Dynamics, 1976, 4: 579-587.
    [7] 金 波, 徐植信. 多孔饱和半空间上刚体垂直振动的轴对称混合边值问题[J]. 力学学报, 1997, 29(6): 711-719. (JIN Bo, XU Zhi-xin. The problem on axial symmetry mixed boundary value of vertical vibration of rigid body on porous saturated half space[J]. Acta Mechanica Sinica, 1997, 29(6): 711-719. (in Chinese))
    [8] GLADWELL G M L. The forced torsional vibration of an elastics stratum[J]. International Journal of Engineering Science, 1969, 7: 1011-1024.
    [9] GUEUNSKI N. Vertical vibrations of circular flexible foundations on layered media[J]. Soil Dynamics & Earthquake Engineering, 1993, 12: 183-192
    [10] 罗松南, 郭 平. 黏弹性层状半空间的.动力响应及其在动力基础中的应用[J]. 湖南大学学报, 1993, 20(1): 57-64. (LUO Song-nan, GUO Ping. Dynamic response of layered viscoelastic half-space and its application to dynamic foundation problems[J]. Journal of Hunan University, 1993, 20(1): 57-64. (in Chinese))
    [11] 陈胜立, 张建民, 陈龙珠. 下卧刚性基岩的饱和地基上基础的动分析[J]. 固体力学学报, 2002, 23(3): 325-329. (CHEN Sheng-li, ZHANG Jian-min, CHEN Long-zhu. Dynamic response of a rigid circular footing on single- layered saturated soil[J]. Acta Mechanica Solida Sinica, 2002, 23(3): 325-329. (in Chinese))
    [12] RAJAPAKSE R K N D, SENJUNTICHAI T. Dynamic response of a multi-layered proroelastic medium[J]. Earthquake Engineering & Structural Dynamics, 1995, 24: 703-722.
    [13] WOLF J P. Dynamic-stiffness matrix of soil by the boundary-element method: Embedded foundations[J]. Earthquake & Engineering Structural Dynamics, 1984, 12: 401-416.
    [14] LUCO J E, WONG H L. Response of hemispherical foundation embedded in half-space[J]. Journal of Engineering Mechanics, ASCE, 1986, 112: 1363-1374.
    [15] DE Barros F C P, LUCO J E. Dynamic response of a two-dimensional semi-circular foundation embedded in a layered viscoelastic half-space[J]. Soil Dynamics & Earthquake Engineering, 1995, 14: 45-57.
    [16] LIANG J W, FU J, TODOROVSKA M I, et al. Effects of the site dynamic characteristics on soil-structure interaction (I): Incident SH-Waves[J]. Soil Dynamics & Earthquake Engineering, 2013, 44(1): 27-37.
    [17] LIANG J W, FU J, TODOROVSKA M I, et al. Effects of site dynamic characteristics on soil-structure interaction (II): Incident P and SV waves[J]. Soil Dynamics & Earthquake Engineering, 2013, 51(8): 58-76.
    [18] SENJUNTICHAI T, RAJAPAKSE R K N D. Vertical vibration of an embedded rigid foundation in a poraelastic soil[J]. Soil Dyn Earthq Eng, 2006, 26: 626-636.
    [19] 蔡袁强, 胡秀青. 饱和地基中埋置刚性圆柱基础的等效竖向动力刚度[J]. 岩石力学与工程学报, 2008, 27(2): 361-367. (CAI Yuan-qiang, HU Xiu-qing. Equivalent vertical dynamic stiffness for embedded rigid cylindrical foundation in saturated soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(2): 361-367. (in Chinese))
    [20] 胡秀青, 蔡袁强, 下卧基岩饱和地基中埋置刚性基础的竖向振动问题研究, 岩土力学, 2009, 30(12): 3739-3746. (HU Xiu-qing, CAI Yuan-qiang. Vertical vibration of rigid embedded foundations in saturated soil overlying bedrock[J]. Rock & Soil Mechanics, 2009, 30(12): 3739-3746. (in Chinese))
    [21] 龚晓南. 软黏土地基各向异性初步探讨[J]. 浙江大学学报, 1986(4): 20-24. (GONG Xiao-nan. A preliminary research on anisotropy of the soft clay ground[J]. Journal of Zhejiang University, 1986(4): 20-24. (in Chinese))
    [22] 丁浩江. TI弹性力学[M]. 杭州: 浙江大学出版社, 1997. (DING Hao-jiang. Mechanics of transversely isotropic elasticity[M]. Hangzhou: Zhejiang University Press, 1997. (in Chinese))
    [23] GAZETAS G. Strip foundations on a cross-anisotropic soil layer subjected to dynamic loading[J]. Géotechnique, 1981, 31: 161-179.
    [24] KIRKNER D J. Vibration of a rigid disk on a transversely isotropic elastic half space[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1982, 6: 293-306.
    [25] 吴大志, 蔡袁强, 徐长节, 等, 横观各向同性饱和地基上刚性圆板的扭转振动, 应用数学和力学, 2006, 27(1): 1349-1356. (WU Da-zhi, CAI Yuan-qiang, XU Chang-jie, et al. Torsional vibrations of rigid disk plate on transversely isotropic saturated soil overlaying bedrock[J]. Journal of Zhejiang University(Engineering Science), 2006, 27(1): 1349-1356. (in Chinese))
    [26] BARROS P L A. Impedances of rigid cylindrical foundations embedded in transversely isotropic soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30: 683-702.
    [27] LIN G, HAN ZJ, ZHONG H, et al. A precise integration approach for dynamic impedance of rigid strip foundation on arbitrary anisotropic layered half-space[J]. Soil Dynamics & Earthquake Engineering, 2013, 49: 96-108.
    [28] 巴振宁, 张艳菊, 梁建文, 层状横观各向同性半空间中凹陷地形对平面SH波的散射[J]. 地震工程与工程振动, 2015, 2(1): 9-21. (BA Zhen-ning, ZHANG Yan-ju, LIANG Jian-wen. Scattering of SH wave by a canyon in transversely isotropic layered half-space[J]. Earthquake Engineering and Engineering Dynamic, 2015, 2(1): 9-21. (in Chinese))
  • 期刊类型引用(3)

    1. 肖源杰,王政,AMINU Umar Faruk,王萌,李昀博,孔坤锋,陈宇亮,周震,李志勇. 不同建筑固废再生骨料取代率下粗粒土填料永久变形特性及安定行为研究. 中南大学学报(自然科学版). 2024(03): 1008-1022 . 百度学术
    2. 宾伟,黄靓,曾令宏,刘文琦,屈辉,彭龙辉,李东. 水泥固化再生骨料改性盐渍土的路用性能研究. 公路. 2024(08): 94-100 . 百度学术
    3. 肖源杰,王政,AMINU Umar Faruk,王萌,李昀博,孔坤锋,陈宇亮,周震,李志勇. 不同建筑固废再生骨料取代率下粗粒土填料永久变形试验及预估模型. 中国公路学报. 2023(10): 17-29 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 15
出版历程
  • 收稿日期:  2015-11-10
  • 发布日期:  2017-03-24

目录

    /

    返回文章
    返回