• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

摩擦型能源桩荷载-温度现场联合测试与承载性状分析

路宏伟, 蒋刚, 王昊, 洪鑫, 史春乐, 龚红卫, 刘伟庆

路宏伟, 蒋刚, 王昊, 洪鑫, 史春乐, 龚红卫, 刘伟庆. 摩擦型能源桩荷载-温度现场联合测试与承载性状分析[J]. 岩土工程学报, 2017, 39(2): 334-342. DOI: 10.11779/CJGE201702018
引用本文: 路宏伟, 蒋刚, 王昊, 洪鑫, 史春乐, 龚红卫, 刘伟庆. 摩擦型能源桩荷载-温度现场联合测试与承载性状分析[J]. 岩土工程学报, 2017, 39(2): 334-342. DOI: 10.11779/CJGE201702018
LU Hong-wei, JIANG Gang, WANG Hao, HONG Xin, SHI Chun-le, GONG Hong-wei, LIU Wei-qing. In-situ tests and thermo-mechanical bearing characteristics of friction geothermal energy piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 334-342. DOI: 10.11779/CJGE201702018
Citation: LU Hong-wei, JIANG Gang, WANG Hao, HONG Xin, SHI Chun-le, GONG Hong-wei, LIU Wei-qing. In-situ tests and thermo-mechanical bearing characteristics of friction geothermal energy piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 334-342. DOI: 10.11779/CJGE201702018

摩擦型能源桩荷载-温度现场联合测试与承载性状分析  English Version

基金项目: 江苏省六大人才高峰项目(2012-JZ-009); 江苏省建筑节能示范科技项目(2013SF01)
详细信息
    作者简介:

    路宏伟(1978- ),男,博士研究生,主要从事建筑节能与绿色建筑研究。E-mail: jscstlhw@163.com。

    通讯作者:

    蒋刚,E-mail:g.jiang@njtech.edu.cn

In-situ tests and thermo-mechanical bearing characteristics of friction geothermal energy piles

  • 摘要: 能源桩集地源热泵技术与建筑桩基于一体,桩基承载性状受荷载-温度耦合作用而不同于常规工程桩。开展了昆山某摩擦型能源桩工程的荷载-温度现场联合测试,测试了多级荷载水平与不同换热工况下桩身的温度、应力分布及桩顶位移变化,整理得到桩身的附加温度荷载、桩身轴力及桩侧摩阻力分布曲线,分析了摩擦型能源桩荷载-温度作用下的承载性状与荷载传递特征。测试结果表明:能源桩的温度变化将引起附加温度荷载,桩身轴力和附加温度荷载分布特征和桩顶荷载作用、桩端约束有关,承载性状不同于单一荷载作用下的工程桩。加热工况引起桩身上、中部多处出现负摩阻力,但荷载的增加有利于减小升温引起的负摩阻力效应;制冷工况下,桩端附近产生负摩阻力,能源桩荷载传递特征受荷载-温度耦合作用而改变。设计荷载作用下,能源桩顶加热时隆起而制冷时下沉,加热工况引起的桩顶位移在停止加热回温后可基本恢复,但制冷工况引起的桩顶位移在回温后会导致桩顶产生附加沉降,荷载-温度耦合作用也引起了能源桩沉降性状的变化。
    Abstract: Geothermal energy pile is the new pile technology that combines the ground source heat pump technology and building pile foundation. Due to the pile as the heat transfer carrier of ground source heat pumps, the bearing characteristics of energy piles are different from those of the conventional engineering piles because of thermo-mechanical coupling. In-situ thermo-mechanical tests on drilled friction geothermal energy piles of a Kunshan project are performed. The temperature, stress distribution of pile shaft and displacement of pile tip are investigated under multi-level loadings and heat exchange cases. The distribution curves of temperature-induced loading, axial force and friction resistance of pile shaft are obtained, and the thermo-mechanical bearing properties and load transfer characteristics of drilled friction energy piles are analyzed. The results indicate that the additional temperature loading is induced in energy pile shaft by temperature change. The characteristics of axial force and the temperature-induced loading of energy piles are affected by pile loading and constraint of pile toe. The bearing properties of the energy piles is not the same with that of the engineering piles by loading only. Under heating condition, the negative friction resistance of pile shaft is produced at the upper and middle parts of pile, but the effect of negative friction resistance decreases by the increasing loading. While under cooling condition, the negative friction resistance of pile shaft is produced near the pile toes. So the load transfer characteristics of energy piles are changed by the thermo-mechanical coupling effect. Under the design working loading, the head of energy piles is uplift under heating case and dropped under cooling case. The displacement of energy pile head at heating process is almost restored after temperature is recovered, but the temperature-induced settlement of energy piles at cooling process
  • [1] 何满潮, 徐能雄. 地热能开发利用技术新进展与发展趋势[J]. 地热能, 2004(1): 7-15. (HE Man-chao, XU Neng-xiong. New progress and development trend of geothermal energy development and utilization technology[J]. Geothermal Energy, 2004(1): 7-15. (in Chinese))
    [2] LUND J, SANNER B, RYBACH L, et al. Geothermal (ground-source) heat pumps-a world overview[J]. GHC Bulletin, 2004, 25(3): 1-10.
    [3] BRANDL H. Energy foundations and other thermo-active ground structures[J]. Géotechnique , 2006, 56(2): 81-122.
    [4] 徐 伟. 中国地源热泵发展研究报告[M]. 北京: 中国建筑工业出版社, 2008. (XU Wei. Report on China ground-source heat pump[M]. Beijing: China Architecture & Building Press, 2008. (in Chinese))
    [5] 余 闯, 潘林有, 刘松玉, 等. 热交换桩的作用机制及其应用[J]. 岩土力学, 2009, 30(4): 933-937. (YU Chuang, PAN Lin-you, LIU Song-yu, et al. Working mechanism and application of heat exchanger piles[J]. Rock and Soil Mechanics, 2009, 30(4): 933-937. (in Chinese))
    [6] 刘汉龙, 孔纲强, 吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报, 2013, 35(12): 1-7. (LIU Han-long, KONG Guang-qiang, CHARLES W W Ng. Review of the applications of energy pile and development of PCC energy pile technical[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 1-7. (in Chinese))
    [7] 黄 旭, 孔纲强, 刘汉龙, 等. 循环温度场作用下 PCC 能量桩热力学特性模型试验研究[J]. 岩土力学, 2015, 36(3): 667-673. (HUANG Xu, KONG Gang-qiang, LIU Han-long, et al. Experimental research on thermomechanical characteristics of PCC energy pile under cyclic temperature field[J]. Rock and Soil Mechanics, 2015, 36(3): 667-673. (in Chinese))
    [8] HAMADA Y, SAITOH H, NAKAMURA M, et al. Field performance of an energy pile syste-m for space heating[J]. Energy and Buildings, 2007, 39(5): 517-24.
    [9] ABDELAZIZ S L, OLGUN C G, MARTIN J R. Design and operational considerations of geothermal energy piles[C]// Geo-Frontiers 2011: Advances in Geotechnical Engineering. Dallas, 2011: 450-459.
    [10] 陈忠购, 赵石娆, 张正威. 内置并联U形埋管能量桩的换热性能研究[J]. 工程力学, 2013, 30(5): 238-243. (CHEN Zhong-gou ZHAO Shi-rao, ZHANG Zheng-wei. Heat transfer analysis of energy piles with parallel connected u-tubes[J]. Engineering Mechanics, 2013, 30(5): 238-243. (in Chinese))
    [11] 仲 智, 唐志伟. 桩埋管地源热泵系统及其应用[J]. 可再生能源, 2007, 24(2): 94-96. (ZHONG Zhi, TANG Zhi-wei. Energy pile geothermal heat pump system and its application[J]. Renewable Energy Resources, 2007, 25(2): 94-96. (in Chinese))
    [12] LALOUI L, NUTH M, VULLIET L. Experimental and numerical investigations of the behaviour of a heat exchanger pile[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8): 763-781.
    [13] BOUME-WEBB P J, AMATYA B, SOGA K, et al. Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles[J]. Géotechnique, 2009, 59(3): 237-248.
    [14] 桂树强, 程晓辉. 能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36(6): 1087-1094. (GUI Shu-qiang, CHENG Xiao-hui. In-situ Test for structural responses of energy pile to heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1087-1094. (in Chinese))
    [15] AMATYA B L, SOGA K, BOUME-WEBB P J, et al. Thermo-mechanical behaviour of energy piles[J]. Géotechnique, 2012, 62(6): 503-519.
    [16] OUYANG Y, SOGA K, LEUNG Y F. Numerical back-analysis of energy pile test at Lambeth College, london[C]// Geo-Frontiers 2011: Advances in Geotechnical Engineering. American Society of Civil Engineers. Dallas, 2011: 440-449.
    [17] KNELLWOLF C, PERON H, LALOUI L. Geotechnical analysis of heat exchanger piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(10): 890-902.
    [18] SURYATRIYASTUTI M E, MROUEH H, BURLON S. Understanding the temperature-induced mechanical behaviour of energy pile foundations[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 3344-3354.
    [19] GASHTI E H N, MALASKA M, KUJALA K. Evaluation of thermo-mechanical behaviour of composite energy piles during heating/cooling operations[J]. Engineering Structures, 2014, 75: 363-373.
    [20] JEONG S, LIM H, LEE J K, et al. Thermally induced mechanical response of energy piles in axially loaded pile groups[J]. Applied Thermal Engineering, 2014, 71(1): 608-615.
    [21] JGJ 106—2014建筑基桩检测技术规范[S]. 2014. (JGJ 106—2014 Technical code for testing of building foundation piles[S]. 2014. (in Chinese))
  • 期刊类型引用(5)

    1. 曾辉. 大断面隧道掘进施工下稳定性数值模拟研究. 佳木斯大学学报(自然科学版). 2025(04): 112-115 . 百度学术
    2. 叶友林,商诗健,牛奔,路志旺,徐春一. 正交下穿截污管盾构开挖面被动失稳颗粒流模拟研究. 沈阳建筑大学学报(自然科学版). 2024(01): 70-77 . 百度学术
    3. 陈一凡,沈翔,陈湘生. 海底软弱地层浅埋大直径盾构对接开挖面失稳灾变机制研究. 隧道建设(中英文). 2024(04): 712-723 . 百度学术
    4. 谢强,马瑗婕,吴俊,薛孝强,涂正楠. 基坑开挖引起下穿交叉隧道变形效应分析. 地下空间与工程学报. 2024(05): 1695-1705 . 百度学术
    5. 叶友林,刘晓龙,牛奔,周广宇,徐春一. 上软下硬复合地层盾构隧道开挖面稳定性分析. 沈阳工业大学学报. 2024(06): 848-854 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  462
  • HTML全文浏览量:  7
  • PDF下载量:  623
  • 被引次数: 11
出版历程
  • 收稿日期:  2015-12-08
  • 发布日期:  2017-03-24

目录

    /

    返回文章
    返回