• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

玄武岩纤维混凝土隧道衬砌承载特性模型试验研究

崔光耀, 王道远, 倪嵩陟, 朱长安, 袁金秀, 周济民

崔光耀, 王道远, 倪嵩陟, 朱长安, 袁金秀, 周济民. 玄武岩纤维混凝土隧道衬砌承载特性模型试验研究[J]. 岩土工程学报, 2017, 39(2): 311-318. DOI: 10.11779/CJGE201702015
引用本文: 崔光耀, 王道远, 倪嵩陟, 朱长安, 袁金秀, 周济民. 玄武岩纤维混凝土隧道衬砌承载特性模型试验研究[J]. 岩土工程学报, 2017, 39(2): 311-318. DOI: 10.11779/CJGE201702015
CUI Guang-yao, WANG Dao-yuan, NI Song-zhi, ZHU Chang-an, YUAN Jin-xiu, ZHOU Ji-min. Model tests on bearing characteristics of basalt fiber-reinforced concrete tunnel linings[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 311-318. DOI: 10.11779/CJGE201702015
Citation: CUI Guang-yao, WANG Dao-yuan, NI Song-zhi, ZHU Chang-an, YUAN Jin-xiu, ZHOU Ji-min. Model tests on bearing characteristics of basalt fiber-reinforced concrete tunnel linings[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 311-318. DOI: 10.11779/CJGE201702015

玄武岩纤维混凝土隧道衬砌承载特性模型试验研究  English Version

基金项目: 国家自然科学基金项目(51408008、51478277); 国家十二五科技支撑项目(2012BAK09B06); 国家重点基础研究发展计划(“973”计划)项目(2010CB732105); 河北省自然科学基金项目(E201619002); 四川省应用基础研究计划项目(2014JY0090、2015JY0166); 四川省交通科技项目(2013A1-5); 河北省高等学校科学技术研究青年基金项目(QN2014161,QN2016240); 北方工业大学青年拔尖人才培育计划项目(XN070017)
详细信息
    作者简介:

    崔光耀(1983-),男,山东莒南人,博士,副教授,主要从事隧道与地下工程的教学与研究。E-mail: cyao456@163.com。

    通讯作者:

    王道远,E-mail:wtg-888@163.com

Model tests on bearing characteristics of basalt fiber-reinforced concrete tunnel linings

  • 摘要: 玄武岩纤维是一种环保高性能的无机材料。玄武岩纤维混凝土所具有的增强、增韧、阻裂等性能,对于控制软弱围岩隧道的变形具有重要的力学优势。通过钢筋混凝土和玄武岩纤维混凝土衬砌力学行为室内模型试验,对玄武岩纤维混凝土衬砌的承载特性进行研究。研究结果表明:相比钢筋混凝土,玄武岩纤维混凝土衬砌的初裂荷载提高了20%;掺入玄武岩纤维后衬砌结构的韧性增强,衬砌初裂后仍可承担较大的弯矩和变形。衬砌初裂前,钢筋混凝土和玄武岩纤维混凝土衬砌支护特性曲线基本成线形变化;衬砌初裂后,钢筋混凝土衬砌支护特性曲线在缓慢上升后,快速趋于收敛;玄武岩纤维混凝土衬砌承载特性曲线缓慢上升,至2倍初裂荷载时仍无收敛迹象。因此,玄武岩纤维混凝土能较好地满足软弱围岩隧道尽早封闭岩面、尽快提供支护力并具有一定变形能力的要求。研究成果对于软岩大变形隧道的变形控制具有重要的意义。
    Abstract: Basalt fiber is a kind of inorganic material, which is effective and environmentally friendly. Basalt fiber concrete has important mechanical advantages to control the deformation of soft rock tunnels because it has functions such as strengthening, toughening, crack resistance and so on. Through the indoor model tests on mechanical behaviors of reinforced concrete and basalt fiber-reinforced concrete, the bearing characteristics of lingings of basalt fiber concrete linings are investigated. The test results show that compared with that of the reinforced concrete lining, the initial crack load of the basalt fiber concrete lining increases by 20 percent. The lining structure gets tougher after it is mixed with basalt fiber, moreover, after occurrence of the initial crack, the linings can also bear larger bending moment and deformation. The bearing characteristic curves of linings of the reinforced concrete and basalt fiber concrete exhibit linear change before the initial crack. After the initial crack, the curve of the reinforced concrete rises slowly before rapid convergence. The curve of the basalt fiber concrete increases to two times the value of the initial crack load and there is no convergence trend. Therefore, the basalt fiber concrete can satisfy both the requirements that the rock surface of the soft wall rock tunnel should be closed as soon as possible and the linings can provide supporting force with a certain deformation ability as soon as possible. The research results are extremely important to the control of large deformation of soft rock.
  • [1] 李鹏飞, 赵 勇, 刘建友. 隧道软弱围岩变形特征与控制方法[J]. 中国铁道科学, 2014, 35(5): 55-61. (LI Peng-fei, ZHAO Yong, LIU Jian-you. Deformation characteristics and control method of tunnel with weak surrounding rock[J]. China Railway Science, 2014, 35(5): 55-61. (in Chinese))
    [2] 朱永全, 李文江, 赵 勇. 软弱围岩隧道稳定性变形控制技术[M]. 北京: 人民交通出版社, 2012. (ZHU Yong-quan, LI Wen-jiang, ZHAO Yong. Deformation mechanism and control technology of weak rock surrounding tunnel[M]. Beijing: China Communications Press, 2012. (in Chinese))
    [3] 徐前卫, 马 静, 朱合华, 等. 软弱破碎隧道围岩开挖面稳定性的拟三维模型试验研究[J]. 岩土工程学报, 2011, 33(增刊1): 465-470. (XU Qian-wei, MA Jing, ZHU He-hua, et al. Pseudo-three-dimensional experimental study on tunnel face stability in weak and fractured rock mass[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 465-470. (in Chinese))
    [4] 王海良, 袁 磊, 宋 浩. 短切玄武岩纤维混凝土力学性能试验研究[J]. 建筑结构, 2013, 43(增刊2): 562-564. (WANG Hai-liang, YUAN Lei, SONG Hao. Experimental study on mechanical property of chopped basalt fiber reinforced concrete[J]. Building Structure, 2013, 43(S2): 562-564. (in Chinese))
    [5] 廉 杰, 杨新勇, 杨 萌, 等. 短切玄武岩纤维增强混凝土力学性能的试验研究[J]. 工业建筑, 2007, 37(6): 8-10. (LIAN Jie, YANG Yong-xin, YANG Meng, et al. Experimental research on the mechanical behavior of chopped basalt fiber reinforced concrete[J]. Industrial Construction, 2007, 37(6): 8-10. (in Chinese))
    [6] WANG H L, GUO H Y, YANG X L, et al. Experimental research on influences on mechanical property of C50 waterproof concrete by basalt fiber [J]. Advanced Materials Research, 2014, 834: 755-761.
    [7] ADHIKARI S. Mechanical properties and flexural applications of basalt fiber reinforced polymer (BFRP) bars[D]. Akron: University of Akron, 2009.
    [8] 彭 苗, 黄浩雄, 廖清河, 等. 玄武岩纤维混凝土基本力学性能试验研究[J]. 混凝土, 2012, 33(1): 74-75. (PENG Miao, HUANG Hao-xiong, LIAO Qing-he, et al. Test study on basic mechanical properties of basalt fiber reinforced concrete[J]. Concrete, 2012, 33(1): 74-75. (in Chinese))
    [9] PASSUELLO A, MORICONI G, SHAH S P. Cracking behavior of concrete with shrinkage reducing admixtures and PVA fibers[J]. Cement & Concrete Composites, 2009(39): 699-704.
    [10] BOGHOSSIAN E, WEGNER L D. Use of flax fiber to reduce plastic shrinkage cracking in concrete[J]. Cement & Concrete Composites, 2008(30): 929-937.
    [11] 宋 艳, 朱珍德, 张慧慧. 深埋隧道喷射钢纤维混凝土支护的数值模拟[J]. 水利与建筑工程学报, 2013, 11(2): 204-208. (SONG Yan, ZHU Zhen-de, ZHANG Hui-hui. Numerical simulation for sprayed steel fiber concrete supporting in deep- buried tunnel[J]. Journal of Water Resources and Architectural Engineering, 2013, 11(2): 204-208.
    [12] 刘新荣, 祝云华, 李晓红, 等. 隧道钢纤维喷射混凝土单层衬砌试验研究[J]. 岩土力学, 2009, 30(8): 2319-2323. (LIU Xin-rong, ZHU Yun-hua, LI Xiao-hong, et al. Experimental research on single-layer tunnel lining of steel fiber shotcrete[J]. Rock and Soil Mechanics, 2009, 30(8): 2319-2323. (in Chinese))
    [13] 刘赫凯, 丁一宁. 钢纤维自密实混凝土管片力学性能的试验研究[J]. 建筑材料学报, 2011, 14(1): 10-13, 21. (LIU He-kai, DING Yi-ning. Experimental study on performance of steel fiber reinforced self-compacting concrete(SCC) tunnel lining[J]. Journal of Building Materials, 2011, 14(1): 10-13, 21. (in Chinese))
    [14] 高 磊, 胡国辉, 徐 楠, 等. 玄武岩纤维工程性质研究进展[J]. 地下空间与工程学报, 2014, 10(增刊2): 1749-1754. (GAO Lei, HU Guo-hui, XU Nan, et al. Advances in research on engineering properties of basalt fiber[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(S2): 1749-1754. (in Chinese))
    [15] 徐 源, 瞿家宝, 陈阳利, 等. 地铁管片用玄武岩纤维增强水泥混凝土性能试验研究[J]. 铁道建筑, 2014(5): 157-161. (XU Yuan, QU Jia-bao, CHEN Yang-li, et al. Performance of basalt fiber-reinforced cement-based concrete and its application in metro segmental liner[J]. Railway Engineering, 2014(5): 157-161. (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-07
  • 发布日期:  2017-03-24

目录

    /

    返回文章
    返回