• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

动态承压水作用下深基坑底部弱透水层的出逸比降解析研究

章丽莎, 应宏伟, 谢康和, 王小刚, 朱成伟

章丽莎, 应宏伟, 谢康和, 王小刚, 朱成伟. 动态承压水作用下深基坑底部弱透水层的出逸比降解析研究[J]. 岩土工程学报, 2017, 39(2): 295-300. DOI: 10.11779/CJGE201702013
引用本文: 章丽莎, 应宏伟, 谢康和, 王小刚, 朱成伟. 动态承压水作用下深基坑底部弱透水层的出逸比降解析研究[J]. 岩土工程学报, 2017, 39(2): 295-300. DOI: 10.11779/CJGE201702013
ZHANG Li-sha, YING Hong-wei, XIE Kang-he, WANG Xiao-gang, ZHU Cheng-wei. Analytical study on exit gradient at base aquitard of deep excavations under dynamic artesian water[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 295-300. DOI: 10.11779/CJGE201702013
Citation: ZHANG Li-sha, YING Hong-wei, XIE Kang-he, WANG Xiao-gang, ZHU Cheng-wei. Analytical study on exit gradient at base aquitard of deep excavations under dynamic artesian water[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 295-300. DOI: 10.11779/CJGE201702013

动态承压水作用下深基坑底部弱透水层的出逸比降解析研究  English Version

基金项目: 国家自然科学基金项目(51278462,51278453,51678523); 国家自然科学基金重点项目(51338009); 教育部高校博士点专项科研基金项目(20120101110029)
详细信息
    作者简介:

    章丽莎(1988- ),女,博士研究生,主要从事软黏土工程、地下工程等方面的研究。E-mail:zhanglisha@zju.edu.cn。

    通讯作者:

    应宏伟,E-mail:ice898@zju.edu.cn

Analytical study on exit gradient at base aquitard of deep excavations under dynamic artesian water

  • 摘要: 根据深大基坑坑底弱透水层的一维越流模型,求解了承压水头变化引起的坑底弱透水层中的超静孔隙水压力和出逸比降的解析表达式。当坑底土层渗透系数较大时,出逸比降计算结果与传统方法的出逸比降求解结果一致,验证了出逸比降解析解的正确性。基于出逸比降解析解,分析了动态承压水作用下坑底出逸比降的变化规律和影响因素。结果表明:当基坑坑底弱透水层厚度一定时,土体渗透系数、压缩模量或承压水头波动周期越大,出逸比降波动越明显,幅值越大,相位差越小;出逸比降影响因素可通过与土体渗透系数和压缩模量正相关,与承压水头波动的角频率和弱透水层厚度的平方负相关的无量纲因子统一表示。最后通过工程实例表明,对于坑底弱透水层渗透系数较小的情况,降承压水头引起的出逸比降减小幅度不大并存在明显滞后性,对基坑的抗渗流稳定性具有不利影响。
    Abstract: Based on one - dimensional leaky model for base aquitard of deep excavations, analytical solutions for the excess pore water pressure induced by variation of artesian water head and the corresponding exit gradients in the base aquitard are derived. If the value of permeability coefficient of the base soil is large enough, the calculated results of the exit gradient using the suggested method agree with the traditional ones, thus the validity of the suggested method is verified. According to the analytic solutions for the exit gradient, the variation laws and influence factors of the exit gradient in excavations under dynamic artesian water are analyzed. The results show when the thickness of the excavation base aquitard is certain, the greater the permeability coefficient, the compressibility modulus or the variation period of artesian water head of the soil, the more significantly the exit gradient fluctuated, the less its amplitude attenuated and phase shifted. The influence factor of the exit gradient is described by the dimensionless factor, which is positively correlated with the permeability coefficient and the compressibility modulus of the soil, but negatively correlated with the angular frequency of variation of artesian water head and the squared thickness of the aquitard. Finally, a practical project indicates that the lower permeability coefficient in the base aquitard leads to unapparent amplitude damping and significant phase lagging of the exit gradient induced by the artesian water head variation, which has detrimental effect on the seepage stability of excavation projects.
  • [1] 丁春林. 软土地区承压水基坑突涌稳定计算法研究综述[J]. 地下空间与工程学报, 2007(2): 333-338. (DING Chun-lin. Summary of study on calculation method of inrushing for confined water foundation pit in soft soil area[J]. Chinese Journal of Underground Space and Engineering, 2007(2): 333-338. (in Chinese))
    [2] 马石城, 印长俊, 邹银生. 抗承压水基坑底板的厚度分析与计算[J]. 工程力学, 2004(2): 204-208. (MA Shi-cheng, YIN Chang-jun, ZOU Yin-sheng. Analysis and calculation of the pit base plate thickness of bearing resistance water foundation[J]. Engineering Mechanics, 2004(2): 204-208. (in Chinese))
    [3] 丁春林, 王东方. 基于塑性破坏的承压水基坑突涌计算模型研究[J]. 工程力学, 2007(11): 126-131. (DING Chun-lin, WANG Dong-fang. A study on calculation model for piping in foundation pit with confined underground water based on plastic failure[J]. Engineering Mechanics, 2007(11): 126-131. (in Chinese))
    [4] 丁春林, 孟晓红. 承压水基坑离心模型试验与现场实测分析[J]. 同济大学学报(自然科学版), 2008(1): 22-26. (DING Chun-lin, MENG Xiao-hong. Centrifuge model test and field measurement analysis for foundation pit with confined water[J]. Journal of Tongji University (Natural Science), 2008(1): 22-26. (in Chinese))
    [5] 王玉林, 谢康和, 卢萌盟, 等. 受承压水作用的基坑底板临界厚度的确定方法[J]. 岩土力学, 2010, 31(5): 1539-1544. (WANG Yu-lin, XIE Kang-he, LU Meng-meng, et al. A method for determining critical thickness of base soil of foundation pit subjected to confined water[J]. Rock and Soil Mechanics, 2010, 31(5): 1539-1544. (in Chinese))
    [6] 孙玉永, 周顺华, 肖红菊. 承压水基坑抗突涌稳定判定方法研究[J]. 岩石力学与工程学报, 2012, 31(2): 399-405. (SUN Yu-yong, ZHOU Shun-hua, XIAO Hong-ju. Study of stability judgement method of confined water inrushing in foundation pit[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 399-405. (in Chinese))
    [7] 李镜培, 张 飞, 梁发云, 等. 承压水基坑突涌机制离心模型试验与数值模拟[J]. 同济大学学报(自然科学版), 2012(6): 837-842. (LI Jing-pei, ZHANG Fei, LIANG Fa-yun, et al. Centrifugal model tests and numerical simulation on hydraulic heave mechanism in excavation with confined water[J]. Journal of Tongji University (Natural Science), 2012(6): 837-842. (in Chinese))
    [8] WU Y X, SHEN S, XU Y S, et al. Characteristics of groundwater seepage with cut-off wall in gravel aquifer. Ⅰ: Field observations[J]. Canadian Geotechnical Journal, 2015, 52(10): 1526-1538.
    [9] 杨建民, 郑 刚. 基坑降水中渗流破坏归类及抗突涌验算公式评价[J]. 岩土力学, 2009, 30(1): 261-264. (YANG Jian-min, ZHENG Gang. Classification of seepage failures and opinion to formula for check bursting instability in dewatering[J]. Rock and Soil Mechanics, 2009, 30(1): 261-264. (in Chinese))
    [10] GUE S S, TAN Y C. Two case histories of basement excavation with influence on groundwater. Keynote Lecture[C]// International Conference on Structural and Foundation Failures (ICSFF). Singapore, 2004.
    [11] VAN BEEK V M, BEZUIJEN A, SELLMEIJER J B, et al. Initiation of backward erosion piping in uniform sands[J]. Géotechnique, 2014, 64(12): 927-941.
    [12] LI H L, JIAO J J. Review of analytical studies of tidal groundwater flow in coastal aquifer systems[C]// Proceedings of International Symposium on Water Resources and the Urban Environment. Wuhan, 2003.
    [13] 何报寅, 蔡述明. 三峡工程与长江中游浅层承压水动态[J]. 长江流域资源与环境, 1999, 8(1): 94-99. (HE Bao-yin, CAI Shu-ming. The three-gorge project and dynamics of shallow confined water in the area of the middle reaches of yangtze river[J]. Resources and Environment in the Yangtze Basin, 1999, 8(1): 94-99. (in Chinese))
    [14] 陈崇希. 地下水不稳定井流计算方法[M]. 北京: 地质出版社, 1983. (CHEN Chong-xi. Calculation methods on groundwater unstable well-flow[M]. Beijing: Geological Press, 1983. (in Chinese))
    [15] 黄大中. 水位变化引发的土层耦合固结变形理论研究[D].杭州: 浙江大学, 2014. (HUANG Da-zhong. Studies on theory of coupled consolidation for soil layer induced by groundwater level variation[D]. Hangzhou: Zhejiang University, 2014. (in Chinese))
    [16] CONTE E, TRONCONE A. Soil layer response to pore pressure variations at the boundary[J]. Géotechnique, 2008, 58(1): 37-44.
    [17] 应宏伟, 章丽莎, 谢康和, 等. 坑外地下水位波动引起的基坑水土压力响应[J]. 浙江大学学报(工学版), 2014, 48(3): 492-497. (YING Hong-wei, ZHANG Li-sha, XIE Kang-he, et al. Pore and earth pressure response to groundwater fluctuation out of foundation pit[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(3): 492-497. (in Chinese))
    [18] TERZAGHI K, PECK R B, MESRI G. Soil mechanics in engineering practice[M]. New York: John Wiley & Sons, 1996.
  • 期刊类型引用(13)

    1. 严辉,林沛元. 深圳市岩溶地层标准贯入击数神经网络模型. 地质科技通报. 2025(02): 305-321 . 百度学术
    2. 李书兆,孙国栋,申辰,李文逵,罗进华,王教龙. 基于深度学习和地震数据的海上风电场CPT预测研究. 工程地球物理学报. 2025(02): 216-226 . 百度学术
    3. 崔纪飞,柏林,饶平平,康陈俊杰,张锟. 基于人工智能算法的氯盐侵蚀混凝土预测模型. 硅酸盐通报. 2024(02): 439-447 . 百度学术
    4. 段文魁,王来发,晁华俊,明锋. 冻结过程中土体导热系数预测模型. 中国农村水利水电. 2024(05): 47-52 . 百度学术
    5. 唐少容,殷磊,杨强,柯德秀. 微胶囊相变材料改良粉砂土的导热系数及预测模型. 中国粉体技术. 2024(03): 112-123 . 百度学术
    6. 姚兆明,王洵,齐健. 土体导热系数智能方法预测及影响因素敏感性分析. 工程热物理学报. 2024(05): 1440-1449 . 百度学术
    7. 邓志兴,谢康,李泰灃,王武斌,郝哲睿,李佳珅. 基于粗颗粒嵌锁点高铁级配碎石振动压实质量控制新方法. 岩土力学. 2024(06): 1835-1849 . 百度学术
    8. 李林,左林龙,胡涛涛,宋博恺. 基于孔压静力触探试验测试数据的原位固结系数物理信息神经网络反演方法. 岩土力学. 2024(10): 2889-2899 . 百度学术
    9. 王红旗,李栋伟,钟石明,贾志文,王泽成,陈鑫,秦子鹏. 石灰改良红黏土导热系数影响因素及模型预测. 科学技术与工程. 2023(05): 2084-2092 . 百度学术
    10. 王才进,武猛,蔡国军,赵泽宁,刘松玉. 基于多元分布模型预测土体热阻系数. 岩石力学与工程学报. 2023(S1): 3674-3686 . 百度学术
    11. 王健翔,任瑞琪. 电学等效的稳态平板导热系数测试实验装置. 电子制作. 2023(11): 105-109 . 百度学术
    12. 王才进,武猛,杨洋,蔡国军,刘松玉,何欢,常建新. 基于生物地理优化的人工神经网络模型预测软土的固结系数. 岩土力学. 2023(10): 3022-3030 . 百度学术
    13. 徐明,康雅晶,马斯斯,张鹤. 基于贝叶斯优化的XGBoost模型预测路基回弹模量. 公路交通科技. 2023(11): 51-60 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 15
出版历程
  • 收稿日期:  2015-12-07
  • 发布日期:  2017-03-24

目录

    /

    返回文章
    返回