• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

流变岩体中任意形状隧道分部开挖响应的理论解

王华宁, 骆莉莎, 蒋明镜

王华宁, 骆莉莎, 蒋明镜. 流变岩体中任意形状隧道分部开挖响应的理论解[J]. 岩土工程学报, 2017, 39(2): 259-268. DOI: 10.11779/CJGE201702009
引用本文: 王华宁, 骆莉莎, 蒋明镜. 流变岩体中任意形状隧道分部开挖响应的理论解[J]. 岩土工程学报, 2017, 39(2): 259-268. DOI: 10.11779/CJGE201702009
WANG Hua-ning, LUO Li-sha, JIANG Ming-jing. Analytical solutions for tunnels with any shape excavated sequentially in rheological rock at great depth[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 259-268. DOI: 10.11779/CJGE201702009
Citation: WANG Hua-ning, LUO Li-sha, JIANG Ming-jing. Analytical solutions for tunnels with any shape excavated sequentially in rheological rock at great depth[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 259-268. DOI: 10.11779/CJGE201702009

流变岩体中任意形状隧道分部开挖响应的理论解  English Version

基金项目: 国家自然科学基金项目(11572228); 中央高校基本科研业务费专项资金项目(学科交叉类); 同济大学土木工程防灾国家重点实验室自主课题(SLDRCE14-B-11)
详细信息
    作者简介:

    王华宁(1975- ),教授,博士生导师,主要从事岩土工程中解析与数值方法的研究。E-mail: wanghn@tongji.edu.cn。

Analytical solutions for tunnels with any shape excavated sequentially in rheological rock at great depth

  • 摘要: 针对流变岩体中任意断面形状隧道的任意复杂分部开挖问题,根据复变函数理论结合Laplace变换建立黏弹性位移、应力与复位势之间的关系,给出了各施工阶段力学响应(位移与应力)理论解的一般求解方法和解答。从解答可以看出,各步增量位移是新开挖边界处释放面力作用下的流变位移与之前所有各施工步边界释放面力在本步时段中的增量流变位移的和,与施工路径相关。以圆形断面隧道分两阶段(从半圆形到圆形)任意分部开挖为例,导出了各步开挖过程围岩位移与应力的解析解。为验证解答的正确性,针对圆形断面上下开挖方式,将理论结果与有限元结果进行了对比,两者一致。利用解答对上下开挖、右左开挖两种方案下圆形隧道的位移、应力分布特点进行了分析。根据本文方法,可以得到任意黏弹性模型岩体中,复杂孔型任意分部开挖过程的解答。依据解答可建立快速预测系统,给出更方便、快捷地进行相似工程条件下初步设计的可选方法。
    Abstract: The analytical solutions are presented for the sequential excavation of the tunnel with any shape in viscoelastic rock subjected to anisotropic stress conditions. The complex variable method and the Laplace transformation are introduced to express the displacement and stress by the two potentials, therefore the methodology and analytical solutions for displacement and stress are derived for the general viscoelastic cases. The incremental displacement after each excavation step is the summation of (1) the rheological displacement due to the released stresses along the new boundary in this step and (2) the incremental rheological displacement due to the released stresses along excavation boundaries in all previous steps. The specific analytical solution is given for the two step sequential excavations of circular tunnel. A good agreement between the results from finite element simulations and the analytical solutions is observed for the specific top-bottom excavation method. The displacement and stress distributions for two excavation methods, top-bottom and left-right excavations, are analyzed by the proposed solutions. According to the analytical solutions, a fast computational system for predicting the mechanical state during tunnel excavation can be established in the future, which may provide a more convenient way for the preliminary design of the tunnel.
  • [1] STERPI D, GIODA G. Visco-plastic behaviour around advancing tunnels in squeezing rock[J]. Rock Mechanics and Rock Engineering, 2009, 42(2): 319-339.
    [2] DUENSER C, BEER G. Simulation of sequential excavation with the boundary element method[J]. Computers and Geotechnics, 2012, 44: 157-166.
    [3] ROATEŞI S. Analysis of the successive phases of a tunnel excavation with support mounting[J]. Proceedings of the Romanian Academy, Series A, 2010, 11(1): 11-18.
    [4] ROATEŞI S. Analytical and numerical approach for tunnel face advance in a viscoplastic rock mass[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 123-132.
    [5] ROATEŞI S. Finite element analysis of effect of lining on damage in viscoplastic rocks[J]. Computers and Geotechnics, 2013, 49: 1-6.
    [6] SHARIFZADEH M R, DARAEI R, BROOJERDI M S. Design of sequential excavation tunneling in weak rocks through findings obtained from displacements based back analysis[J]. Tunnelling and Underground Space Technology, 2012, 28: 10-17.
    [7] FAHIMIFAR A, TEHRANI F M, HEDAYAT A, et al. Analytical solution for the excavation of circular tunnels in a visco-elastic Burger’s materialunder hydrostatic stress field[J]. Tunnelling and Underground Space Technology, 2010, 25: 297-304.
    [8] GRAHAM G A C, SABIN G C W. The correspondence principle of linear viscoelasticity for problems that involve time-dependent regions[J]. International Journal of Engineering Science, 1973, 11: 123-140.
    [9] GRAHAM G A C. The correspondence principle of linear viscoelasticity theory for mixed boundary value problems involving time-dependent boundary regions[J]. Quarterly of Applied Mathematics, 1968, 26: 167-174.
    [10] GRAHAM G A C. The solution of mixed boundary value problems that involve time-dependent boundary regions for viscoelastic materials with one relaxation function[J]. Acta Mechanica, 1969, 8: 188-204.
    [11] PYATIGORETS A V, MOGILEVSKAYA S G, MARASTEANU M O. Linear viscoelastic analysis of a semi-infinite porous medium[J]. International Journal of Solids and Structures, 2008, 45(5): 1458-1482.
    [12] WANG H N, LI Y, NI Q. Analytical solutions for the construction of deeply buried circular tunnels with two liners in rheological rock[J]. Rock Mechanics & Rock Engineering, 2013, 46(6): 1481-1498.
    [13] WANG H N, UTILI S, JIANG M J. An analytical approach for the sequential excavation of axisymmetric lined tunnels in viscoelastic rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 68: 85-106.
    [14] 苏 锋, 陈福全, 施有志. 深埋双隧洞开挖的解析延拓法求解[J]. 岩石力学与工程学报, 2012, 31(2): 365-374. (SU Feng, CHEN Fu-quan, SHI You-zhi. Analytic continuation solution of deep twin-tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 365-374. (in Chinese))
    [15] LEE E H. Stress analysis in viscoelastic bodies[J]. Quarterly of Appiled Mathematicas, 1955, 13: 183-190.
    [16] 王华宁, 蒋明镜, 何 平. 流变岩体中椭圆洞室断面开挖过程的力学分析[J]. 岩土工程学报, 2013, 35(11): 1979-1987. (WANG Hua-ning, JIANG Ming-jing, HE Ping. Analytical solutions for elliptical tunnels in rheological rock considering excavation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 1979-1987. (in Chinese))
    [17] 杨挺青. 黏弹性力学[M]. 武汉: 华中理工大学出版社, 1990. (YANG Ting-qing. Viscoelastic mechanics[M]. Wuhan: Huazhong university of sceience Press, 1990. (in Chinese))
    [18] 祝江鸿. 隧洞围岩应力复变函数分析法中的解析函数求解[J]. 应用数学和力学, 2013, 34(4): 345-354. (ZHU Jiang-hong. Rock for caverns with the complex variable theory[J]. Applied Mathematics and Mechanics, 2013, 34(4): 345-354. (in Chinese))
    [19] 朱大勇, 钱七虎, 周早生, 等. 复杂形状洞室映射函数新解法[J]. 岩石力学与工程学报, 1999, 18(3): 279-282. (ZHU Da-yong, QIAN Qi-hu, ZHOU Zao-sheng, et al. New method for calculating mapping function of opening with complex shape[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(3): 279-282. (in Chinese))
    [20] FENG X T, CHEN B R, YANG C X, et al. Identification of visco-elastic models for rocks using genetic programming coupled with the modified particle swarm optimization algorithm[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(5): 789-801.
  • 期刊类型引用(2)

    1. 张子洋,汪波,刘锦超,刘金炜,杨凯. 后注浆预应力树脂锚杆应力损失后注浆段效用分析. 铁道科学与工程学报. 2025(02): 783-794 . 百度学术
    2. 谈博海,姚囝,杜键,孙明伟,刘海,关文超. 膨胀型浆体注浆锚杆拉拔力学特性及损伤失效机制研究. 岩石力学与工程学报. 2024(12): 3058-3069 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 2
出版历程
  • 收稿日期:  2015-11-16
  • 发布日期:  2017-03-24

目录

    /

    返回文章
    返回