• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

泥岩隧道锚承载特性现场模型试验研究

刘新荣, 李栋梁, 吴相超, 李维树, 张锐, 傅晏

刘新荣, 李栋梁, 吴相超, 李维树, 张锐, 傅晏. 泥岩隧道锚承载特性现场模型试验研究[J]. 岩土工程学报, 2017, 39(1): 161-169. DOI: 10.11779/CJGE201701015
引用本文: 刘新荣, 李栋梁, 吴相超, 李维树, 张锐, 傅晏. 泥岩隧道锚承载特性现场模型试验研究[J]. 岩土工程学报, 2017, 39(1): 161-169. DOI: 10.11779/CJGE201701015
LIU Xin-rong, LI Dong-liang, WU Xiang-chao, LI Wei-shu, ZHANG Rui, FU Yan. Filed model tests on bearing behavior of mudstone tunnel anchorage[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 161-169. DOI: 10.11779/CJGE201701015
Citation: LIU Xin-rong, LI Dong-liang, WU Xiang-chao, LI Wei-shu, ZHANG Rui, FU Yan. Filed model tests on bearing behavior of mudstone tunnel anchorage[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 161-169. DOI: 10.11779/CJGE201701015

泥岩隧道锚承载特性现场模型试验研究  English Version

基金项目: 2015重庆市研究生科研创新项目(CYB15038); 中央高校基金项目(106112014CDJZR200008); 国家自然科学基金青年基金项目(51308567,51409013)
详细信息
    作者简介:

    刘新荣(1969- ),男,教授,博士生导师,主要从事岩土工程、隧道等方面的科研工作。E-mail: liuxrong@126.com。

Filed model tests on bearing behavior of mudstone tunnel anchorage

  • 摘要: 为了研究高荷载作用下的软岩(泥岩)隧道锚的变形、破坏及长期稳定性等问题,以在建的某长江大桥为依托,分别针对泥岩隧道锚自然状态(含水率为5.36%)和浸水状态(含水率为7.39%)的情况,开展了缩尺比例为1∶30现场模型试验。研究发现:隧道式锚锭同样适用围岩为软弱围岩(泥岩)的情况,可以承受较高的拉拔荷载,采用设计荷载工作时,具有一定的安全储备,并可以满足长期稳定性要求。屈服荷载作用以后,泥岩隧道锚的破坏优先沿锚体接触面发生剪切破坏,破坏后,会引起较大范围的围岩产生大变形。高拉拔荷载作用下,含水率高的泥岩隧道锚的围岩变形较大。考虑江水位变化带来的影响,建议该长江大桥泥岩隧道锚的长期安全系数取为3.5。研究成果可为类似的工程设计、施工等提供参考。
    Abstract: To study the deformation, failure and long-term stability of soft surrounding rock (mudstone) tunnel anchorage under heavy loads, the Changjiang River Bridge under construction is taken as an example, in which 1∶30 reduced-scale models are used for field tests on the mudstone tunnel anchorage in natural state (moisture content of 5.36%) and soaked state (moisture content of 7.39%). According to the research, it is easy to know that the tunnel anchorage is applicable to soft surrounding rock. The soft surrounding rock (mudstone) tunnel anchorage can withstand higher drawing loads and has a certain safety margin when working in the design load conditions. When subjected to yield loads, the contact surfaces of the anchorage and the surrounding rock are sheared into failure first, which will cause large deformation of the surrounding rock. When subjected to high drawing loads, the mudstone tunnel anchorage with higher moisture content undergoes larger deformation of the surrounding rock than the mudstone tunnel anchorage with lower moisture content. Considering the influence of changes of the river water level, the long-term safety factor of mudstone tunnel anchorage for Changjiang River Bridge is suggested to be 3.5. The research results may provide reference for the design and construction of similar projects.
  • [1] 龚维明, 朱建民, 穆保岗, 等. 南京长江四桥北锚锭沉井首次降排水下沉研究[J]. 岩土工程学报, 2010, 32(增刊2): 537-540. (GONG Wei-ming, ZHU Jian-min, MU Bao-gang, et al. Dewater sinking of north anchorage caisson of Fourth Nanjing Yangtze River Bridge[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 537-540. (in Chinese))
    [2] 穆保岗, 朱建民, 牛亚洲. 南京长江四桥北锚锭沉井监控方案及成果分析[J]. 岩土工程学报, 2011, 33(2): 269-274. (MU Bao-gang, ZHU Jian-min, NIU Ya-zhou. Monitoring and analysis of north anchorage caisson of Fourth Nanjing Yangtze River Bridge[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 269-274. (in Chinese))
    [3] 胡 波, 赵海滨, 王思敬, 等. 隧道锚围岩拉拔模型试验研究及数值模拟[J]. 岩土力学, 2009, 30(6): 1575-1582. (HU Bo, ZHAO Hai-bin, WANG Si-jing, et al. Pull-out model test for tunnel anchorage and numerical analysis[J]. Rock and Soil Mechanics, 2009, 30(6): 1575-1582. (in Chinese))
    [4] 朱杰兵, 邬爱清, 黄正加, 等. 四渡河特大悬索桥隧道锚模型拉拔试验研究[J]. 长江科学院院报, 2006, 23(4): 51-55. (ZHU Jie-bing, WU Ai-qing, HUANG Zheng-jia, et al. Pulling test of anchorage model of Siduhe suspension bridge[J]. Journal of Yangtze River Scientific Research Institute, 2006, 23(4): 51-55. (in Chinese))
    [5] 夏才初, 程鸿鑫, 李荣强. 广东虎门大桥东锚锭现场结构模型试验研究[J]. 岩石力学与工程学报, 1997, 16(6): 571-576. (XIA Cai-chu,CHENG Hong-xin, LI Rong-qiang. Testing study on field structure model of the east anchorage of Guangdong Humen bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 1997, 16(6): 571-576. (in Chinese))
    [6] 董志宏, 张奇华, 丁秀丽, 等. 矮寨悬索桥隧道锚锭稳定性数值分析[J]. 长江科学院院报, 2005, 22(6): 54-58. (DONG Zhi-hong, ZHANG Qi-hua, DING Xiu-li, et al. Numerical analysis of rock mass stability in tunnel anchorage of Aizhai bridge[J]. Journal of Yangtze River Scientific Research Institute, 2005, 22(6): 54-58. (in Chinese))
    [7] 汪海滨, 高 波, 朱栓来, 等. 四渡河特大桥隧道式锚锭数值模拟[J]. 中国公路学报, 2006, 19(6): 73-78. (WANG Hai-bin, GAO Bo, ZHU Shuan-lai, et al. Numerical simulation on tunnel anchorage of Siduhe super-long bridge[J]. China Journal of Highway and Transport, 2006, 19(6): 73-78. (in Chinese))
    [8] 吴 俊, 应 松, 李苍松, 等. 坝陵河大桥隧道锚与关岭1号隧道地质关系浅议[J]. 工程地质学报, 2006, 14(增刊): 438-444. (WU Jun, YING Song, LI Cang-song, et al. Geological relationship between tunnel anchor of Baling River bridge and Guanling No.1 tunnel[J]. Journal of Engineering Geology, 2006, 14(S0): 438-444. (in Chinese))
    [9] 刘建新, 胡兆同. 大跨度吊桥[M]. 北京: 人民交通出版社, 1996. (LIU Jian-xin, HU Zhao-tong. Large span suspension bridge[M]. Beijing: China Communications Press, 1996. (in Chinese))
    [10] 赵海斌, 于新华, 彭运动, 等. 坝陵河大桥隧道锚围岩力学特性原位试验研究[J]. 河海大学学报(自然科学版), 2009, 37(6): 680-684. (ZHAO Hai-bin, YU Xin-hua, PENG Yun-dong, et al. In situ tests on mechanical properties of rock surrounding tunnel-type anchors of Balinghe Bridge[J]. Journal of Hohai University (Natural Sciences), 2009, 37(6): 680-684. (in Chinese))
    [11] 余美万, 张奇华, 喻正富, 等. 基于夹持效应的普立特大桥隧道锚现场模型试验研究[J]. 岩石力学与工程学报, 2015, 34(2): 261-270. (YU Mei-wan, ZHANG Qi-hua, YU Zheng-fu, et al. Field model experiment on clamping effect of tunnel-type anchorage at Puli bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 261-270. (in Chinese))
    [12] 张奇华, 余美万, 喻正富, 等. 普立特大桥隧道锚现场模型试验研究—抗拔能力试验[J]. 岩石力学与工程学报, 2015, 34(1): 93-103. (ZHANG Qi-hua, YU Mei-wan, YU Zheng-fu, et al. Field model tests on pullout capacity of tunnel-type anchorages of Puli bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 93-103. (in Chinese))
    [13] 肖本职, 吴相超, 彭朝全. 重庆鹅公岩大桥隧道锚锭围岩稳定性[J]. 岩石力学与工程学报, 2005, 24(增刊2): 5591-5597. (XIAO Ben-zhi, WU Xiang-chao, PENG Chao-quan. Stability of the anchorage wall rock of tunnel for Chongqing Egongyan bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(S2): 5591-5597. (in Chinese))
    [14] 张奇华, 胡建华, 陈国平, 等. 矮寨大桥基础岩体稳定问题研究[J]. 岩石力学与工程学报, 2012, 31(12): 2420-2430. (ZHANG Qi-hua, HU Jian-hua, CHEN Guo-ping, et al. Study of rock foundation stability of Aizhai bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2420-2430. (in Chinese))
    [15] 曾钱帮, 王思敬, 彭运动, 等. 坝陵河悬索桥西岸隧道式锚锭锚塞体长度方案比选的数值模拟研究[J]. 水文地质工程地质, 2005, 32(6): 66-70. (ZENG Qian-bang, WANG Si-jing, PENG Yun-dong, et al. Numerical simulation on scheme comparison between two concrete-plug lengths of west tunnel-type anchorage of Balinghe suspension bridge[J]. Hydrogeology and Engineering Geology, 2005, 32(6): 66-70. (in Chinese))
    [16] 庞正江, 孙豪杰, 赖其波, 等. 1∶10 隧道锚缩尺模型的变形及应力特性[J]. 岩石力学与工程学报, 2015, 34(增刊2): 3972-3978. (PANG Zheng-jiang, SUN Hao-jie, LAI Qi-bo, et al. Deformation and stress characteristics of tunnel-type anchorage model on scale 1∶10[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3972-3978. (in Chinese))
  • 期刊类型引用(4)

    1. 刘学增,房茂柳,吴德兴,李银萍,刘新根,李罡. 隧道结构病害快速检测技术的现状与发展. 隧道建设(中英文). 2025(04): 657-676 . 百度学术
    2. 李文博. 公路隧道无损检测技术与病害处理方法分析. 交通科技与管理. 2024(07): 79-81 . 百度学术
    3. 路德春,秦威,郭彩霞,李久林,杜修力. gprMax干扰消除方法优化隧道壁后空洞成像特征研究. 隧道建设(中英文). 2024(10): 1928-1940 . 百度学术
    4. 朱厚喜,曹伍富,李克飞,伊建峰,刘少华,李洪珏. 基于多模态特征融合的隧道渗水异常检测方法. 计算机应用. 2023(S2): 276-284 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 4
出版历程
  • 收稿日期:  2015-10-24
  • 发布日期:  2017-01-24

目录

    /

    返回文章
    返回