• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

荷载频率对动模量阻尼比影响的试验研究

李瑞山, 陈龙伟, 袁晓铭, 李程程

李瑞山, 陈龙伟, 袁晓铭, 李程程. 荷载频率对动模量阻尼比影响的试验研究[J]. 岩土工程学报, 2017, 39(1): 71-80. DOI: 10.11779/CJGE201701005
引用本文: 李瑞山, 陈龙伟, 袁晓铭, 李程程. 荷载频率对动模量阻尼比影响的试验研究[J]. 岩土工程学报, 2017, 39(1): 71-80. DOI: 10.11779/CJGE201701005
LI Rui-shan, CHEN Long-wei, YUAN Xiao-ming, LI Cheng-cheng. Experimental study on influences of different loading frequencies on dynamic modulus and damping ratio[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 71-80. DOI: 10.11779/CJGE201701005
Citation: LI Rui-shan, CHEN Long-wei, YUAN Xiao-ming, LI Cheng-cheng. Experimental study on influences of different loading frequencies on dynamic modulus and damping ratio[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 71-80. DOI: 10.11779/CJGE201701005

荷载频率对动模量阻尼比影响的试验研究  English Version

详细信息
    作者简介:

    李瑞山(1987- ),男,博士,助理研究员,主要从事岩土地震工程研究。E-mail: lrshan22@hotmail.com。

Experimental study on influences of different loading frequencies on dynamic modulus and damping ratio

  • 摘要: 目前荷载频率对动模量阻尼比影响规律尚无较为统一认识,定量结果尚少。采用新型高精度动三轴仪试验,研究不同荷载频率对典型砂土和黏土动模量阻尼比影响问题,并以此为基础从对地震动影响角度讨论考虑荷载频率相关动模量阻尼比必要性。结果表明:对砂土而言,荷载频率对其动剪切模量影响不大,随着加载频率的增大,阻尼比略有减小,但差别基本可以忽略;对黏土而言,荷载频率对其动剪切模量和阻尼比有重要影响,随着振动频率的增加,动剪切模量增大,阻尼比减小;黏土参考剪应变随荷载频率增大而增大,二者呈递增的指数函数,当f≤1 Hz时,影响十分明显,当1 Hz <f ≤3 Hz时,有一定影响,当f > 3Hz时,影响不明显;黏土最大阻尼比随频率的增大而减小,二者呈递减的指数函数,当f ≤10 Hz时,影响较为明显,当f > 10 Hz时,影响程度显著减弱;采用两组频率下模量阻尼比曲线计算黏土层地震动,地表加速度峰值和反应谱差别很大,且随着震动增强而显著增大,说明考虑黏土层动模量阻尼比的荷载频率相关性是十分必要的。
    Abstract: There is not a consistent conclusion on the influences of loading frequency on dynamic modulus and damping ratio, and the quantitative results are few. Through a series of tests using the new cyclic triaxial (CT) divice with high precision, the main objective of which is to evaluate the influences of excitation frequency on the shear modulus and damping ratio of typical sand and clay samples are studied. The necessity of considering the frequency-dependent modulus and damping ratio is discussed from the perspective of ground motion on the basis of the tests. The results show that: (1) For the sand, the shear modulus is almost independent of the loading frequency. The damping ratio slightly decreases due to the increase of vibration frequency, but the deviations can be ignored. (2) For the clay soil, the loading frequency has significant influences on its shear modulus and damping ratio. The shear modulus increases, but the damping ratio decreases with the increase of the loading frequency. (3) The CT tests indicate measurable growth in the reference shear strain γr with the loading frequency in the form of an increasing exponential function. The dynamic properties are very sensitive to the excitation frequency when f ≤ 1 Hz. In the range of 1 Hz <f ≤ 3 Hz, the influences are clear. When the frequency exceeds the upper band of 3 Hz, the shape is nearly on the same level. (4) The maximum damping ratio Dmax decreases with the vibration frequency in a form of exponential function. When the frequency is lower than 10 Hz, the influences are obvious. If f>10 Hz, the influences gradually vanish. (5) The ground motion of a simplified ideal clay site is calculated using two sets of shear modulus and damping ratio curves under two different test loading frequencies, 0.1 Hz and 3 Hz. The peak ground accelerations and the response spectra show serious dissimilarities, which are increasingly severe as the intensity of ground shaking is enhanced. This study therefore demonstrates that considering the frequency correlation of shear modulus and damping ratio is of extreme necessity.
  • [1] 袁晓铭, 孙 锐, 孙 静, 等.常规土类动剪切模量比和阻尼比试验研究[J]. 地震工程与工程振动, 2000, 20(4): 133-140. (YUAN Xiao-ming, SUN Rui, SUN Jing, et al. Laboratory experimental study on dynamic shear modulus ratio and damping ratio of soils[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(4): 133-140. (in Chinese))
    [2] 孙 静, 袁晓铭. 土的动模量和阻尼比研究述评[J]. 世界地震工程, 2003, 19(1): 88-95. (SUN Jing, YUAN Xiao-ming. A state-of-art of research on dynamic modulus and damping ratio of soils[J]. World Earthquake Engineering, 2003, 19(1): 88-95. (in Chinese))
    [3] SHNABEL P B, LYSMER J, SEED H B. SHAKE: a computer program for earthquake response analysis of horizontal layer sites[R]. Berkeley: University of California, 1972.
    [4] SEED H B, IDRISS I M. Soil moduli and damping factors for dynamic response analysis[R]. Report No. EERC-70-10, Berkeley: University of California, 1970.
    [5] YOSHIDA N, KOBAYASHI S, SUETOMI I, et al. Equivalent linear method considering frequency dependent characteristics of stiffness and damping[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(3): 205-222.
    [6] ASSIMAKI D, KAUSEL E. An equivalent linear algorithm with frequency and pressure-dependent moduli and damping for the seismic analysis of deep sites[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9-12): 959-965.
    [7] 蒋 通, 邢海灵. 水平土层地震反应分析考虑频率相关性的等效线性化方法[J]. 岩土工程学报, 2007, 29(2): 218-224. (JIANG Tong, XING Hai-ling. An equivalent linear method considering frequency-dependent soil properties for seismic response analysis[J]. Chinese Journal of Geo- technical Engineering, 2007, 29(2): 218-224. (in Chinese))
    [8] BOLTON M D, WILSON J M R. An experimental and theoretical comparison between static and dynamic torsional soil tests[J]. Géotechnique, 1989, 39(4): 585-599.
    [9] IWASAKI T, TATSUOKA F, TAKAGI Y. Shear modulus of sands under cyclic torsional shear loading[J]. Soils and Foundations, 1978, 18(1): 39-56.
    [10] 张建民, 王稳祥. 振动频率对饱和砂土动力特性的影响[J]. 岩土工程学报, 1990, 12(1): 89-97. (ZHANG Jian-min, WANG Wen-xiang. Effect of vibration frequency on dynamic properties of saturated sandy soil[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(1): 89-97. (in Chinese))
    [11] WICHTMANN T, NIEMUNIS A, TRIANTAFYLLIDIS T. Strain accumulation in sand due to cyclic loading: drained triaxial tests[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(12): 967-979.
    [12] YASUHARA K, YAMANOUCHI T, HIRAO K. Cyclic strength and deformation of normally consolidated clay[J]. Soils and Foundations, 1982, 22(3): 77-91.
    [13] TEACHAVORASINSKUN S, THONGCHIM P, et al. Shear modulus and damping of soft Bangkok clays[J]. Canadian Geotechnical Journal, 2002, 39(5): 1201-1208.
    [14] 何昌荣. 动模量和阻尼的动三轴试验研究[J]. 岩土工程学报, 1997, 19(2): 39-48. (HE Chang-rong. Dynamic triaxial test on modulus and damping[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(2): 39-48. (in Chinese))
    [15] MATEŠIĆ L, VUCETIC M. Strain-rate effect on soil secant shear modulus at small cyclic strains[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(6): 536-549.
    [16] 陈存礼, 胡再强. 强夯地基黄土的动力特性参数及其与振动频率的关系[J]. 西安理工大学学报,1998, 14(2): 216-220. (CHEN Cun-li, HU Zai-qiang. Dynamic characteristics parameters and their relation to vibrofrequency of dynamically-compacted foundation loess[J]. Journal of Xi'an University of Technology, 1998, 14(2): 216-220. (in Chinese))
    [17] 王建荣, 张振中, 王 峻, 等. 振动频率对原状黄土动本构关系的影响[J]. 西北地震学报, 1999, 21(3): 310-314. (WANG Jian-rong, ZHANG Zhen-zhong, WANG Jun, et al. Effect of vibration frequency on dynamic constitutive relationship of loess[J]. Northwestern Seismological Journal, 1999, 21(3): 310-314. (in Chinese))
    [18] 徐学燕, 仲丛利, 陈亚明, 等. 冻土的动力特性研究及其参数确定[J]. 岩土工程学报, 1998, 20(5): 77-81. (XU Xue-yan, ZHONG Cun-li, CHEN Ya-ming, et al. Research on dynamic characters of frozen soil and determination of its parameters[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(5): 77-81. (in Chinese))
    [19] 张 茹, 涂扬举, 费文平, 等. 振动频率对饱和黏性土动力特性的影响[J]. 岩土力学, 2006, 27(5): 699-704. (ZHANG Ru, TU Yang-ju, FEI Wen-ping, et al. Effect of vibration frequency on dynamic properties of saturated cohesive soil[J]. Rock and Soil Mechanics, 2006, 27(5): 699-704. (in Chinese))
    [20] 郑 刚, 霍海峰, 雷华阳, 等. 振动频率对饱和黏土动力特性的影响[J]. 天津大学学报(科学技术版), 2013, 46(1): 38-43. (ZHENG Gang, HUO Hai-feng, LEI Hua-yang, et al. Contrastive study on the dynamic characteristics of saturated clay in different vibration frequencies[J]. Journal of Tianjin University (Science and Technology), 2013, 46(1): 38-43. (in Chinese))
    [21] 黎 冰, 高玉峰, 丰土根. 振动频率对LCES动力特性的影响分析及其机理初探[J]. 岩土力学, 2008, 29(10): 2731-2734, 2740. (LI Bing, GAO Yu-feng, FENG Tu-gen. Cyclic loading frequency effect and mechanism of lightweight clay-EPS beads soil[J]. Rock and Soil Mechanics, 2008, 29(10): 2731-2734, 2740. (in Chinese))
    [22] D’ONOFRIO A, SILVESTRI F, VINALE F. Strain rate dependent behaviour of a natural stiff clay[J]. Soils and Foundations, 1999, 39(2): 69-82.
    [23] SHIBUYA S, MITACHI T, FUKUDA F, et al. Strain-rate effects on shear modulus and damping of normally consolidated clay[J]. Geotechnical Testing Journal, 1995, 18(3): 365-375.
    [24] KHAN Z, NAGGAR M H E, CASCANTE G. Frequency dependent dynamic properties from resonant column and cyclic triaxial tests[J]. Journal of the Franklin Institute, 2011, 348(7): 1363-1376.
  • 期刊类型引用(7)

    1. 刘志,杨阳. 黄原胶联合微生物加固改善混合砂蓄水特性试验研究. 土木与环境工程学报(中英文). 2025(03): 49-57 . 百度学术
    2. 梁越,冉裕星,许彬,张鑫强,何慧汝. 细颗粒含量影响渗流侵蚀规律的细观机理研究. 岩土工程学报. 2025(05): 1099-1106 . 本站查看
    3. 高霞,梅雯艳,吴强,崔祥龙. 球度和扁平度对含瓦斯水合物煤体宏细观力学性质影响研究. 中国安全生产科学技术. 2025(05): 86-94 . 百度学术
    4. 蔡国庆,刁显锋,杨芮,王北辰,高帅,刘韬. 基于CFD-DEM的流-固耦合数值建模方法研究进展. 哈尔滨工业大学学报. 2024(01): 17-32 . 百度学术
    5. 程建毅,郭晓军,李泳. 泥石流物源土体标度分布参数与粘聚力的关系. 山地学报. 2024(03): 401-410 . 百度学术
    6. 孙增春,刘汉龙,肖杨. 砂-粉混合料的分数阶塑性本构模型. 岩土工程学报. 2024(08): 1596-1604 . 本站查看
    7. 孙建强. 颗粒形状对黄土干密度与抗剪强度的影响. 黑龙江工程学院学报. 2024(06): 8-15+23 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 12
出版历程
  • 发布日期:  2017-01-24

目录

    /

    返回文章
    返回