• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高应力区大尺度隧洞开挖损伤区范围预测研究

周栋, 赵志宏, 赵佳鹏

周栋, 赵志宏, 赵佳鹏. 高应力区大尺度隧洞开挖损伤区范围预测研究[J]. 岩土工程学报, 2016, 38(z2): 67-72. DOI: 10.11779/CJGE2016S2011
引用本文: 周栋, 赵志宏, 赵佳鹏. 高应力区大尺度隧洞开挖损伤区范围预测研究[J]. 岩土工程学报, 2016, 38(z2): 67-72. DOI: 10.11779/CJGE2016S2011
ZHOU Dong, ZHAO Zhi-hong, ZHAO Jia-peng. Prediction of excavation damage zone of a deep tunnel with large size subjected to high in-situ stress[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 67-72. DOI: 10.11779/CJGE2016S2011
Citation: ZHOU Dong, ZHAO Zhi-hong, ZHAO Jia-peng. Prediction of excavation damage zone of a deep tunnel with large size subjected to high in-situ stress[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 67-72. DOI: 10.11779/CJGE2016S2011

高应力区大尺度隧洞开挖损伤区范围预测研究  English Version

基金项目: 国家自然科学基金项目(51509138); 清华大学自主科研项目(20151080432)
详细信息
    作者简介:

    周 栋(1993- ),男,硕士研究生,主要从事岩石力学方面的研究。E-mail: zhoudongibk@163.com。

Prediction of excavation damage zone of a deep tunnel with large size subjected to high in-situ stress

  • 摘要: 通过理论公式和数值模拟方法进行了高应力区大尺度隧洞开挖损伤区范围预测研究。当圆形隧洞开挖后,根据工程经验得到的破坏准则,结合隧洞周围的应力经典求解结果,可以推导出损伤区范围的理论公式,并且水平方向与竖直方向的范围能够直接得到,可以作为估测开挖损失区的实用方法。当把破坏准则与有限元方法结合,能够得到更为精确的损伤区分布,改变隧洞的形状与尺寸,得到主要结论如下:当初始水平应力小于竖直应力时,圆形隧洞的直径增大后,水平方向的开挖损伤区范围比竖直方向更大;隧道形状对开挖损伤区分布范围和特性有着显著影响,在相同地应力和围岩条件下,开挖相同面积的圆形和矩形隧洞,圆形隧洞的损伤区范围比矩形隧洞更小;③当矩形隧洞的宽高比增大后,开挖区附近出现拉应力,水平方向的损伤区范围最大。
    Abstract: The analytical and numeral methods are used to predict the excavation damage zone of a deep tunnel with large size subjected to high in-situ stresses. Based on an empirical damage criterion and the classical solutions of stress distributions around a circular tunnel, the range of excavation damage zone in the horizontal and vertical directions can be analytically determined, which can serve as a first-order approximation to estimate the range of excavation damage zone. By integrating the empirical damage criterion with the finite element models, more accurate range of excavation damage zone can be determined. The results show that the excavation damage zone is dependent on the tunnel shapes and sizes: (1) When the diameter of circular tunnel increases, the range of EDZ is larger in the horizontal level than that in the vertical level; (2) The circular tunnel is more economical and reasonable than the other one in the same area; (3) When the width/height of rectangle tunnel increases, there is tensile stress generated in the vicinity of excavation,and the range of EDZ is also larger in the horizontal level.
  • [1] 刘 宁, 张春生, 褚卫江, 等. 锦屏二级水电站深埋隧洞开挖损伤区特征分析[J]. 岩石力学与工程学报, 2013, 32(11): 2235-2241. (LIU Ning, ZHANG Chun-sheng, ZHU Wei-jiang, et al. Excavation damaged zone characteristics in deep tunnel of Jinping II hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11): 2235-2241. (in Chinese))
    [2] 张春生, 陈祥荣, 侯 靖, 等. 锦屏二级水电站深埋大理岩力学特性研究[J]. 岩石力学与工程学报, 2010, 29(10): 1999-2009. (ZHANG Chun sheng, CHEN Xiang-rong, HOU Jing, et al. Study of mechanical behavior of deep-buried marble at Jinping IIhydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 1999-2009. (in Chinese))
    [3] 戴 峰, 李 彪, 徐奴文, 等. 猴子岩水电站深埋地下厂房开挖损伤区特征分析[J]. 岩石力学与工程学报, 2015, 34(4): 735-746. (DAI Feng, LI Biao, XU Nu-wen, et al. Characteristics of damaged zone due to excavation in deep underground powerhouse at Houziyan hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 735-746. (in Chinese))
    [4] MARTINO J B, CHANDLER N A. Excavation-induced damage studies at the underground research laboratory[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1413-1426.
    [5] CASTRO L A M, MCCREATH D R, OLIVER P. Rockmass damage initiation around the sudbury neutrino observatory cavern[C]// North American Rock Mechanics Symposium, 1996.
    [6] ANDERSSON J C, MARTIN C D. The Äspö pillar stability experiment: Part I experiment design[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(5): 865-878.
    [7] CAI M, KAISER P K. Assessment of excavation damaged zone using a micromechanics model[J]. Tunnelling and Underground Space Technology, 2005, 20(4): 301-310.
    [8] 朱泽奇, 盛 谦, 张勇慧, 等. 大岗山水电站地下厂房洞室群围岩开挖损伤区研究[J]. 岩石力学与工程学报, 2013, 32(4): 734-739. (ZHU Ze-qi, SHENG Qian, ZHANG Yong-hui, et al. Research on excavation damage zone of underground powerhouse of Dagangshan hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(4): 734-739. (in Chinese))
    [9] 严 鹏, 卢文波, 陈 明, 等. 深部岩体开挖方式对损伤区影响的试验研究[J]. 岩石力学与工程学报, 2011, 30(6): 1097-1106. (YAN Peng, LU Wen-bo, CHEN Ming, et al. In-situ test research on influence of excavation on induced dam age zone in deep tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1097-1106. (in Chinese))
    [10] 肖 明, 张雨霆, 陈俊涛, 等. 地下洞室开挖爆破围岩松动圈的数值分析计算[J]. 岩土力学, 2010, 31(8): 2613-2618. (XIAO Ming, ZHANG Yu-ting, CHEN Jun-tao, et al. Numerical analysis of excavation damaged zone of underground caverns induced by excavation blasting[J]. Rock and Soil Mechanics, 2010, 31(8): 2613-2618. (in Chinese))
    [11] 陈 明, 胡英国, 卢文波, 等. 深埋隧洞爆破开挖扰动损伤效应的数值模拟[J]. 岩土力学, 2011, 32(5): 1531-1537. (CHEN Ming, HU Ying-guo, LU Wen-bo, et al. Numerical simulation of blasting excavation induced damage to deep tunnel[J]. Rock and Soil Mechanics, 2011, 32(5): 1531-1537. (in Chinese))
    [12] CAI M, KAISER P K, TASAKA Y, et al. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 833-847.
    [13] 蔡美峰. 岩石力学与工程[M]. 北京: 科学出版社, 2002. (CAI Mei-feng. Rock mechanics and engineering[M]. Beijing: Science Press, 2002. (in Chinese))
    [14] 周松鹤. 工程力学[M]. 北京:机械工业出版社, 2007. (ZHOU Song-he. Engineering mechanics[M]. Beijing: China Machine Press, 2007. (in Chinese))
    [15] 徐芝纶. 弹性力学简明教程[M]. 北京:高等教育出版社, 2002. (XU Zhi-lun. A concise course of elastic mechanics[M]. Beijing: High Education Press, 2002. (in Chinese))
    [16] 张 凯. 脆性岩石力学模型与流固耦合机理研究[D]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2010. (ZHANG Kai. Study on mechanical model and fluid-solid coupling mechanism for brittle rocks[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2010. (in Chinese))
    [17] ZHANG C, FENG X, ZHOU H. Estimation of in situ stress along deep tunnels buried in complex geological conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 52(3): 139-162.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-18
  • 发布日期:  2016-10-19

目录

    /

    返回文章
    返回