• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高面板堆石坝内部水平位移新型监测技术研究

何宁, 王国利, 何斌, 汪璋淳, 周彦章, 钱亚俊, 李登华, 张桂荣

何宁, 王国利, 何斌, 汪璋淳, 周彦章, 钱亚俊, 李登华, 张桂荣. 高面板堆石坝内部水平位移新型监测技术研究[J]. 岩土工程学报, 2016, 38(z2): 24-29. DOI: 10.11779/CJGE2016S2004
引用本文: 何宁, 王国利, 何斌, 汪璋淳, 周彦章, 钱亚俊, 李登华, 张桂荣. 高面板堆石坝内部水平位移新型监测技术研究[J]. 岩土工程学报, 2016, 38(z2): 24-29. DOI: 10.11779/CJGE2016S2004
HE Ning, WANG Guo-li, HE Bin, WANG Zhang-chun, ZHOU Yan-zhang, QIAN Ya-jun, LI Deng-hua, ZHANG Gui-rong. New technology for inner horizontal displacement monitoring in high concrete face rockfill dam[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 24-29. DOI: 10.11779/CJGE2016S2004
Citation: HE Ning, WANG Guo-li, HE Bin, WANG Zhang-chun, ZHOU Yan-zhang, QIAN Ya-jun, LI Deng-hua, ZHANG Gui-rong. New technology for inner horizontal displacement monitoring in high concrete face rockfill dam[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 24-29. DOI: 10.11779/CJGE2016S2004

高面板堆石坝内部水平位移新型监测技术研究  English Version

基金项目: 中央级公益性科研院所基本科研业务专项基金项目(Y314009,Y316008)
详细信息
    作者简介:

    何 宁(1969- ),男,江西高安人,理学硕士,教授级高级工程师,主要从事岩土工程监测、检测,软土特性、地基改良及相关工程问题的研究与实践。E-mail: nhe@nhri.cn。

New technology for inner horizontal displacement monitoring in high concrete face rockfill dam

  • 摘要: 中国高面板堆石坝设计理论及筑坝技术已达到世界先进水平,但传统测量手段难以适应300 m级高面板堆石坝安全监测的技术要求,亟需发展新型的高面板堆石坝安全监测技术。对提出的坝体内部水平位移监测分布式光纤监测系统开展了详细的等比尺模型试验研究和原型坝监测试验研究,分析试验研究结果表明该坝体内部水平位移新型监测技术用于300 m级高面板堆石坝最长1000 m的监测断面的沿程水平位移测量,其测量精度通过模型试验和原型试验均得到验证,满足相关规范要求,可以满足高面板堆石坝内部水平位移监测的工作要求。该新型监测技术在土石坝内部水平位移监测工作应用中具备独特特性和优点,是高面板堆石坝内部水平位移监测的一种具有良好应用前景的新型监测技术。
    Abstract: The design theories and dam construction technologies of concrete faced rockfill dam with the height of more than 300 m in China have reached the advanced world level at present. But the traditional measuring methods are not suitable for the safety monitoring of the high concrete face rockfill dam, and the new techniques for safety monitoring of high concrete face rockfill dam are needed. Tests on the proposed technology for horizontal displacement monitoring the dam by using distributed optical fibers are performed through model tests with 1:1 scale and prototype tests. The test result show that the new technology for horizontal displacement monitoring the dam can be used to measure the inner deformation of the dam 300 m in height with the measurement line 1000 m in length. Its measurement accuracy is verified by both the model and the prototype tests, and the relevant regulatory requirements are satisfied. It can meet the work requirements for the internal horizontal displacement monitoring of high concrete face rockfill dam. Applications in internal horizontal displacement monitoring of embankment dam show that the new technology has unique characteristics and advantages, it is good prospect.
  • [1] 中华人民共和国发展和改革委员会.大坝安全监测自动化技术规范[S]. 北京: 中国电力出版社, 2005. (The National Development and Reform Commission of The People's Republic of China. Technical specification for dam safety monitoring automation[S]. Beijing: China Electric Power Press, 2005. (in Chinese))
    [2] 中华人民共和国水利部. 坝安全自动监测系统设备基本条件[S]. 北京: 中国水利电力出版社, 2001. (Ministry of Water Resources of the People's Republic of China. Fundamental specification of equipment of automation system for dam safety monitoring[S]. Beijing: China Water Power Press, 2001. (in Chinese))
    [3] 邓念武, 黄小红, 李 芳. 水平垂直位移计在水布垭面板堆石坝中的应用[J]. 中国农村水利, 2010(12): 125-134. (DENG Nian-wu, HUANG Xiao-hong, LI Fang. Application of horizontal and vertical displacement meter in Shuibuya concrete face rockfill dam[J]. China Rural Water and Hydropower, 2010(12): 125-134. (in Chinese))
    [4] 何福江, 甘莉芬. 高土石坝内部变形观测[J]. 四川水力发电, 2010, 29(增刊1): 43-46. (HE Fu-jiang, GAN Li-fen. Observation of inner deformation in high embankment dam[J]. Sichuan Water Power, 2010, 29(S1): 43-46. (in Chinese))
    [5] 符伟杰, 谢红兰, 徐国龙. 土坝内部水平位移自动监测系统[J]. 水电自动化与大坝监测, 2003, 27(3): 56-58. (FU Wei-jie, XIE Hong-lan, XU Guo-long. Automatic monitoring system of inner horizontal displacement in embankment dam[J]. Hydropower Automation and Dam Monitoring, 2003, 27(3): 56-58. (in Chinese))
    [6] 皱 青, 谭志伟, 张礼兵, 等. 200 m级高面板堆石坝安全监测技术调查与总结报告[R]. 昆明: 昆明勘察设计研究院有限公司, 2014. (ZOU Qing, TAN Zhi-wei, ZHANG Li-bing, et al. Survey and summary report of safety monitor technology of 200 m high rockfill dam[R]. Kunming: Kunming Engineering Corporation Limited, 2014. (in Chinese))
    [7] 王其富, 乔学光, 贾振安, 等. 布里渊散射分布式光纤传感技术的研究进展[J]. 传感器与微系统, 2007, 26(7): 7-9. (WANG Qi-fu, QIAO Xue-guang, JIA Zhen-an, et al. Research and development of brillouin distributed optical fiber technology[J]. Transducer and Microsystem, 2007, 26(7): 7-9. (in Chinese))
    [8] 李化平. 物理测量的误差评定[M]. 北京: 高等教育出版社, 1993. (LI Hua-ping. Physical measurement error evaluation[M]. Beijing: Higher Education Press, 1993. (in Chinese))
    [9] 张启岳. 土石坝观测技术[M]. 北京: 水利电力出版社, 1993. (ZHANG Qi-yue. Technology for safety monitoring of earth and rockfill dam[M]. Beijing: China Water Power Press, 1993. (in Chinese))
    [10] 中华人民共和国水利部. 土石坝安全监测技术规范[S]. 北京: 水利电力出版社, 2012. (Ministry of Water Resources of the People's Republic of China. Technical specification for safety monitoring of earth and rockfill dam[S]. Beijing: China Water Power Press, 2012. (in Chinese))
    [11] 何 宁, 陈生水, 何 斌, 等. 坝体全断面水平位移监测的分布式光纤测量方法及其系统[P]. ZL201310646844.9, 南京: 南京水利科学研究院, 2016. (HE Ning, CHEN Sheng-shui, HE Bin, et al. The method and system of monitoring horizontal displacement inside dam by distributed optical fiber[P]. ZL201310646844.9, Nanjing: Nanjing Hydraulic Research Institute, 2016. in Chinese))
    [12] 傅中志, 霍家平, 傅 华. 习水县铜灌口水库灌区工程大坝筑坝材料试验及三维应力变形分析[R]. 南京: 南京水利科学研究院, 2013. (FU Zhong-zhi, HUO Jia-ping, FU Hua. Material test and three-dimensional stress and deformation analysis of Xishui Tongguankou concrete face rockfill dam[R]. Nanjing: Nanjing Hydraulic Research Institute, 2013. (in Chinese))
    [13] 汪明元, 程展林, 林绍忠, 等. 水布垭面板堆石坝的三维弹塑性数值分析研究[J]. 岩土力学, 2004, 25(增刊2): 507-512. (WANG Ming-yuan, CHENG Zhan-lin, LIN Shao-zhong, et al. Research on 3D elastoplastic numerical analysis of stress and deformation of a concrete faced rockfill dam for Shuibuya Project[J]. Rock and Soil Mechanics, 2004, 25(S2): 507-512. (in Chinese))
  • 期刊类型引用(11)

    1. 张中昊,李赛,汪可欣. 蠕滑-地震动联合作用下跨断层输水隧洞衬砌结构损伤分析. 振动与冲击. 2025(04): 275-285 . 百度学术
    2. 梅润雨,何骁,王义深,李建贺,和晋羽,崔臻. 穿越活动断层输水隧洞病害研究进展. 水利水电快报. 2024(01): 44-51 . 百度学术
    3. 董捷,郑英豪,李兆琦,陈洪运,宫凤梧,闫鑫,刘洋. 考虑断层破碎带影响的隧道结构地震反应研究. 震灾防御技术. 2024(01): 140-150 . 百度学术
    4. 黄娟,龙浩风,周世杰,施成华. 地震作用下大断面隧道衬砌结构的动力损伤特性. 华南理工大学学报(自然科学版). 2023(04): 124-134 . 百度学术
    5. 王志岗,陶连金,石城,安韶. 逆断层错动作用下考虑柔性接头的综合管廊结构力学行为研究. 铁道科学与工程学报. 2023(06): 2256-2267 . 百度学术
    6. 左双英,付丽,陈世万,吴道勇. 基于Interface改进算法的水工隧洞衬砌受力分析. 华中科技大学学报(自然科学版). 2022(01): 99-104 . 百度学术
    7. 周光新,盛谦,张传健,颜天佑,崔臻,李建贺,王天强. 穿越走滑断层铰接隧洞抗错断设计参数作用机制研究. 岩石力学与工程学报. 2022(05): 941-953 . 百度学术
    8. 张臣,曹荣荣,贾坤. 断层叠加影响下不同断层倾角采动应力分布特征. 煤炭技术. 2022(09): 71-74 . 百度学术
    9. 陶连金,王志岗,石城,安韶,贾志波. 基于Pasternak地基模型的断层错动下管线结构纵向响应的解析解. 岩土工程学报. 2022(09): 1577-1586+1 . 本站查看
    10. 周耀强,石文广,唐欣薇,杨轩. 考虑动水压力的输水隧洞-层状地基地震响应分析. 水利水电技术(中英文). 2022(08): 101-111 . 百度学术
    11. 申玉生,陈孔福,李小彤,曾志华,王耀达,雷龙. 强震区仰坡角度对跨断层隧道结构动力响应影响研究. 地震工程与工程振动. 2022(06): 192-201 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数:  448
  • HTML全文浏览量:  9
  • PDF下载量:  271
  • 被引次数: 23
出版历程
  • 收稿日期:  2016-05-18
  • 发布日期:  2016-10-19

目录

    /

    返回文章
    返回