软岩热-弹-黏塑性本构模型

    张升, 徐硕, 熊勇林, 张锋

    张升, 徐硕, 熊勇林, 张锋. 软岩热-弹-黏塑性本构模型[J]. 岩土工程学报, 2016, 38(12): 2278-2286. DOI: 10.11779/CJGE201612017
    引用本文: 张升, 徐硕, 熊勇林, 张锋. 软岩热-弹-黏塑性本构模型[J]. 岩土工程学报, 2016, 38(12): 2278-2286. DOI: 10.11779/CJGE201612017
    ZHANG Sheng, XU Shuo, XIONG Yong-lin, ZHANG Feng. Thermo-elasto-viscoplastic model for soft rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2278-2286. DOI: 10.11779/CJGE201612017
    Citation: ZHANG Sheng, XU Shuo, XIONG Yong-lin, ZHANG Feng. Thermo-elasto-viscoplastic model for soft rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2278-2286. DOI: 10.11779/CJGE201612017

    软岩热-弹-黏塑性本构模型  English Version

    基金项目: 国家重点基础研究发展计划(“973”计划)项目(2014CB047001); 国家自然科学基金项目(51208519)
    详细信息
      作者简介:

      张 升(1979- ),男,湖南邵阳人,博士,副教授,主要从事岩土工程数值模拟、岩土材料本构特性等方面的研究与教学工作。E-mail: zhang-sheng@csu.edu.cn。

    Thermo-elasto-viscoplastic model for soft rock

    • 摘要: 在诸多岩土工程如高放核废料处置、地热资源开发等应用中需要考虑软岩的长期力学特性,而温度升高会对软岩材料的蠕变破坏特性产生复杂影响,建立能反映蠕变破坏特性的本构模型具有理论价值和现实意义。从连续介质力学入手,基于下负荷面剑桥模型和等价应力的概念,建立了能描述软岩在温度作用下蠕变过程的热弹黏塑性模型。利用自主开发的仪器,采用大谷石进行了不同围压下的三轴蠕变试验,并对模型进行了验证。多种实验结果表明,材料在不同应力状态下,存在最优温度使得蠕变破坏最慢,此外,受温升影响时存在蠕变破坏加快和减慢两种现象,提出的模型能统一描述这两种现象。分析了模型特性,总结了不同材料参数和应力状态对蠕变规律的影响。
      Abstract: In the construction of many geotechnical projects, such as nuclear waste disposal and geothermal extraction and storage, it is necessary to consider the long-term mechanical properties of soft rock. Furthermore, the evaluated temperature will cause a complicated influence on the creep damage behaviors of soft rock. In consequence, it is theoretically and practically meaningful to establish a constitutive model which can describe the creep damage behaviors. Within the framework of continuum mechanics, a thermo-visco-elastoplastic model is proposed based on the sub-loading Cam-clay model and the concept of equivalent stress. Triaxial creep tests on Tage stone under different confining pressures are conducted by using the self-developed apparatus. Compared with the numerical results, the experimental results exhibit that for a certain stress state, an optimum temperature exists, which will slow down the creep damage rate the most. In addition, both retarding and accelerating effects on creep rupture due to limited warming are observed for the same material, and this phenomenon can be predicted by the proposed model. Finally, model characteristics are analyzed, and the influence of material parameters on creep laws is discussed.
    • [1] LALOUI L, MODARESSI H. Modelling of the thermo-hydro-plastic behaviour of clays[C]// HOTEIT N, ed. Hydro Mechanical and Thermohydromechanical Behaviour of Deep Argillaceous Rock. Rotterdam: Balkema, 2002: 161-170.
      [2] DELAGE P, SULTAN N, CUI Y J. On the thermal consolidation of Boom clay[J]. Canadian Geotechnical Journal, 2000, 37(2): 343-354.
      [3] 刘泉声, 许锡昌, 出口勉, 等. 三峡花岗岩与温度及时间相关的力学性质试验研究[J]. 岩石力学与工程学报, 2001, 20(5): 715-719. (LIU Quan-sheng, XU Xi-chang, TSUTOMO Y, et al. Testing study on mechanical properties of the three gorges granite concerning temperature and time[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(5): 715-719. (in Chinese))
      [4] 宋世雄, 张建民. 砂土流变行为的热力学本构模型研究[J]. 岩土工程学报, 2015, 37(增刊1): 129-133. (SONG Shi-xiong, ZHANG Jian-min. Thermodynamic constitutive model for rheological behavior of sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 129-133. (in Chinese))
      [5] 梁玉雷, 冯夏庭, 周 辉, 等. 温度周期作用下大理岩三轴蠕变试验与理论模型研究[J]. 岩土力学, 2010, 31(10): 3107-3112. (Liang Yu-lei, Feng Xia-ting, Zhou Hui, et al. Research on triaxial creep experiment and theoretical model of marble under cyclic temperatures[J]. Rock & Soil Mechanics, 2010, 31(10): 3107-3112. (in Chinese))
      [6] CAMPANELLA R G, MITCHELL J K. Influence of temperature variations on soil behavior[J]. Journal of Soil Mechanics and Foundations Engineering Division, ASCE, 1968, 94(3): 709-734.
      [7] HABIBAGAHI K. Temperature effect and the concept of effective void ratio[J]. Indian Geotechnical Journal, 1977, 7(1): 14-34.
      [8] AKAGI H, KOMIYA K. Constant rate of strain consolidation properties of clayey soil at high temperature[C]// Compression and Consolidation of Clayey Soils. Rotterdam: Balkema, 1995: 3-8.
      [9] SHIMIZU M. Quantitative assessment of thermal acceleration of time effects in one-dimensional compression of clays[C]// Deformation Characteristics of Geomaterials. Lyon, 2003: 479-487.
      [10] DE BRUYN D, THIMUS J F. The influence of temperature on mechanical characteristics of Boom clay: the results of an initial laboratory programme[J]. Engineering Geology, 1996, 41(1): 117-126.
      [11] CUI Y J, LE T T, TANG A M, et al. Investigating the time-dependent behaviour of Boom clay under thermo-mechanical loading[J]. Géotechnique, 2009, 59: 319-29.
      [12] 高小平, 杨春和, 吴 文, 等. 盐岩蠕变特性温度效应的实验研究[J]. 岩石力学与工程学报, 2005, 24(12): 2054-2059. (GAO Xiao-ping, YANG Chun-he, WU Wen, et al. Experimental studies on temperature dependent properties of creep of rock salt[J]. Chinese Journal of Rock Mechanics & Engineering, 2005, 24(12): 2054-2059. (in Chinese))
      [13] OKADA T. Mechanical properties of sedimentary soft rock at high temperature. Part 2. Evaluation of temperature dependency of creep behavior based on unconfined compression test[R]. Chiba: Central Research Institute of Electric Power Industry, 2006. (in Japanese)
      [14] 李剑光, 王永岩. 软岩蠕变的温度效应及实验分析[J]. 煤炭学报, 2012, 37(增刊1): 81-85. (LI Jian-guang, WANG Yong-yan. Experimental analysis of temperature effect in creep of soft rock[J]. Journal of China Coal Society, 2012, 37(S1): 81-85. (in Chinese))
      [15] 龚 哲, 陈卫忠, 于洪丹, 等. 基于下加载面概念的饱和黏土温度-应力耦合弹塑性模型[J]. 岩石力学与工程学报, 2015. (GONG Zhe, CHEN Wei-zhong, YU Hong-dan, et al. Thermo-elasto-plastic model for saturated clay based on the concept of sub-loading surface[J]. Chinese Journal of Rock Mechanics & Engineering, 2015. (in Chinese))
      [16] YASHIMA A, LEROUEIL S, OKA F, et al. Modelling temperature and strain rate dependent behavior of clays: One dimensional consolidation[J]. Soils and Foundations, 1998, 38(2): 63-73.
      [17] 高 峰, 徐小丽, 杨效军, 等. 岩石热黏弹塑性模型研究[J]. 岩石力学与工程学报, 2009, 28(1): 74-80. (GAO Feng, XU Xiao-li, YANG Xiao-jun, et al. Research on thermo-visco-elastoplastic model of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(1): 74-80. (in Chinese))
      [18] 王春萍, 陈 亮, 梁家玮, 等. 考虑温度影响的花岗岩蠕变全过程本构模型研究[J]. 岩土力学, 2014, 35(9): 2493-2501. (WANG Chun-ping, CHEN Liang, LIANG Jia-wei, et al. Creep constitutive model for full creep process of granite considering thermal effect[J]. Rock and Soil Mechanics, 2014, 35(9): 2493-2501. (in Chinese))
      [19] MODARESSI H, LALOUI L. A thermo-viscoplastic constitutive model for clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(5): 313-335.
      [20] HASHIGUCHI K. Elasto-plastic constitutive laws of granular materials, constitutive equations of soils[C]// Constitutive Equations of Soils, Proc. 9th Int. Conf. Soil Mech. Found. Eng., Spec. Session 9. Tokyo, 1977: 73-82.
      [21] YAMAKAWA Y, HASHIGUCHI K, IKEDA K. Implicit stress-update algorithm for isotropic Cam-clay model based on the subloading surface concept at finite strains[J]. International Journal of Plasticity, 2010, 26(5): 634-658.
      [22] ZHANG S, LENG W, ZHANG F, et al. A simple thermo-elastoplastic model for geomaterials[J]. International Journal of Plasticity, 2012, 34: 93-113.
      [23] ZHANG S, ZHANG F. A thermo-elasto-viscoplastic model for soft sedimentary rock[J]. Soils and Foundations, 2009, 49(4): 583-595.
      [24] ZHANG F, YASHIMA A, NAKAI T, et al. An elasto-viscoplastic model for soft sedimentary rock based on tij concept and subloading yield surface[J]. Soils and foundations, 2005, 45(1): 65-73.
      [25] SHARIATMADARI N, SAEIDIJAM S. The effect of thermal history on thermo-mechanical behavior of bentonite-sand mixture[J]. International Journal of Civil Engineering, 2012, 10(2): 162-167.
    • 期刊类型引用(10)

      1. 朱才辉,周小松,乔建伟,李鑫磊. 孔内深层强夯法处理湿陷性黄土地基试验研究. 自然灾害学报. 2025(01): 217-229 . 百度学术
      2. 张子萱,曹宝花,韩泽敏,许江波,程芳卉,陈绍华,侯鑫敏,詹皓辰. PFC3D颗粒流模拟纳米黏土改良黄土三轴试验. 岩土工程技术. 2024(03): 365-373 . 百度学术
      3. 杨智慧,李珊花. 基于PFC~(2D)的水泥土单轴压缩试验及细观数值模拟. 中外公路. 2023(01): 189-193 . 百度学术
      4. 刘欢,张庆文,连晓兰,朱孟龙,聂广影. 非饱和绢云母片岩残积土一维压缩变形规律. 科学技术与工程. 2021(03): 1131-1137 . 百度学术
      5. 李涛,蒋明镜,李立青. 非饱和重塑黄土应变控制等应力比试验三维离散元分析. 水利与建筑工程学报. 2021(02): 36-41 . 百度学术
      6. 蒋明镜,王优群,卢国文,张鹏. 非饱和重塑与结构性黄土平面应变试验三维离散元模拟. 水利与建筑工程学报. 2021(02): 1-5+18 . 百度学术
      7. 李瑶,伏映鹏,廖红建,吕龙龙,董琪. 考虑吸力作用的非饱和土离散元模型及细观参数影响分析. 岩土工程学报. 2021(S1): 246-250 . 本站查看
      8. 米文静,张爱军,刘争宏,刘宏泰. 黄土自重湿陷变形的多地层离心模型试验方法. 岩土工程学报. 2020(04): 678-687 . 本站查看
      9. 蒋明镜. 现代土力学研究的新视野——宏微观土力学. 岩土工程学报. 2019(02): 195-254 . 本站查看
      10. 蒋明镜,张浩泽,李涛,张鹏. 非饱和重塑与结构性黄土等向压缩试验离散元分析. 岩土工程学报. 2019(S2): 121-124 . 本站查看

      其他类型引用(14)

    计量
    • 文章访问数:  391
    • HTML全文浏览量:  16
    • PDF下载量:  285
    • 被引次数: 24
    出版历程
    • 收稿日期:  2015-10-10
    • 发布日期:  2016-12-24

    目录

      /

      返回文章
      返回