• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

三维横观各向同性层状地基任意点格林函数求解

韩泽军, 林皋, 周小文

韩泽军, 林皋, 周小文. 三维横观各向同性层状地基任意点格林函数求解[J]. 岩土工程学报, 2016, 38(12): 2218-2225. DOI: 10.11779/CJGE201612010
引用本文: 韩泽军, 林皋, 周小文. 三维横观各向同性层状地基任意点格林函数求解[J]. 岩土工程学报, 2016, 38(12): 2218-2225. DOI: 10.11779/CJGE201612010
HAN Ze-jun, LIN Gao, ZHOU Xiao-wen. Solution to Green’s functions for arbitray points in 3D cross-anisotropic multi-layered soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2218-2225. DOI: 10.11779/CJGE201612010
Citation: HAN Ze-jun, LIN Gao, ZHOU Xiao-wen. Solution to Green’s functions for arbitray points in 3D cross-anisotropic multi-layered soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2218-2225. DOI: 10.11779/CJGE201612010

三维横观各向同性层状地基任意点格林函数求解  English Version

基金项目: 国家自然科学基金青年科学基金项目(51508203); 博士后科学基金项目(2015M570713); 博士后科学基金特别项目(2016T90783)
详细信息
    作者简介:

    韩泽军(1985- ),师资博士后,主要从事结构-复杂层状地基动力相互作用研究。E-mail: ctzjhan@scut.edu.cn。

Solution to Green’s functions for arbitray points in 3D cross-anisotropic multi-layered soil

  • 摘要: 提出了求解横观各向同性层状地基表面或内部任意点位移格林函数的混合数值算法。此算法利用Fourier变换将频率-空间域的波动方程转换到频率-波数域内的状态方程,采用高精度的精细积分算法进行求解,得到频率-波数域内的动力柔度矩阵,最后利用Fourier逆变换得到频率-空间域内任意点的位移格林函数。提出的算法适用于任意横观各向同性层状地基,对地基层数和单层的厚度均没有任何的限制。数值算例验证了算法的准确性,并针对层状地基的各向异性特性进行了参数分析。
    Abstract: A hybrid numerical method is proposed to evaluate the Green’s functions for displacement of surface or internal arbitrary points in cross-anisotropic multi-layered soil. The wave motion equations in frequency-spatial domain are transformed into state equations in frequency-wavenumber domain using the Fourier transform. Then the dynamic flexibility matrix is obtained. Finally, the inverse Fourier transform is used to evaluate the Green’s functions for displacement of arbitary points in frequency-spatial domain. The proposed algorithm is suitable for arbitrary cross-anisotropic multi-layered soil, and there are no limitations for the number and thickness of the layers. The accuracy of the proposed method is validated by numerical examples, and a parameter analysis for the anisotropy of multi-layered soil is presented.
  • [1] LAMB H. On the propagation of tremors over the surface of an elastic solid[J]. Phil Trans, Royal Society of London, 1904, 203: 1-42.
    [2] MINDLIN, R. D. Force at a point in the interior of a semi-infinite solid[J]. Physics, 1936, 7: 195-202.
    [3] APSEL R J, LUCO J E. On the Green's functions for a layered half space (Part II)[J]. Bull Seism Soc of Am, 1983, 73(4): 931-951.
    [4] PAK R Y S. Asymmetric wave propagation in an elastic half-space by a method of potentials[J]. J Appl Mech, 1987, 54(1): 121-126.
    [5] 艾智勇, 曾 凯, 曾文泽. 层状地基三维问题的解析层元解[J]. 岩土工程学报, 2012, 34(6): 1154-1158. (AI Zhi-yong, ZENG Kai, ZENG Wen-ze. Analytical layer-element solution for three-dimensional problem of multilayered foundation[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1154-1158. (in Chinese))
    [6] STONELEY R. The seismological implications of aelotropy in continental structures[R]. London: Royal Astronomical Soc. Monthly Notices, Geophysical Supplement, 1949: 343-353.
    [7] SYNGE J L. Elastic waves in anisotropic media[J]. Journal of Mathematics and Physics 1957, 35: 323-334.
    [8] BUCHWALD V T. Rayleigh waves in transversely isotropic media[J]. Quarterly Journal of Mechanics and Applied Mathematics, 1961, 14(4): 293-317.
    [9] WANG Y, RAJAPAKSE R K N D. Dynamic of rigid strip foundations embedded in orthotropic elastic soils[J]. Earthquake Engineering and Structural Dynamics, 1991, 20: 927-947.
    [10] RAJAPAKSE R K N D, WANG Y. Green’s functions for transversely isotropic elastic half-space[J]. Journal of Engineering Mechanics, ASCE, 1993, 119(9): 1724-1746.
    [11] SHODJA H M, ESKANDARI M. Axisymmetric time-harmonic response of a transversely isotropic substrate-coating system[J]. International Journal of Engineering Science, 2007, 45: 272-287.
    [12] RAHIMIAN M, ESKADARII M, PAK R Y S, et al. An elastodynamic potential method for a transversely isotropic solid[J]. Journal of Engineering Mechanics, ASCE, 2007, 133(10): 1134-1145.
    [13] KHOJASTEH A, RAHIMIAN M, ESKANDARI M, et al. Asymmetric wave propagation in a transversely isotropic half-space in displacement potentials[J]. International Journal of Engineering Science, 2008, 46: 690-710.
    [14] SEALE S H, KAUSEL E. Point loads in cross-anisotropic layered halfspace[J]. J Eng Mech, 1989, 115: 509-524.
    [15] YANG B, PAN E, TEWARY V K. Three-dimensional Green’s functions of steadystate motion in anisotropic half-spaces and bimaterials[J]. Engineering Analysis with Boundary Elements. 2004, 28: 1069-1082.
    [16] KHOJASTEH, A, RAHIMIAN M, PAK R Y S, et al. Asymmetric dynamic Green’s functions in a two-layered transversely isotropic half-space[J]. Journal of Engineering Mechanics, 2008, 134(9): 777-787.
    [17] KHOJASTEH A, RAHIMIAN M, ESKANDARI M, et al. Three-dimensional dynamic Green’s functions for a multilayered transversely isotropic half-space[J]. International Journal of Solids and Structures, 2012, 48: 1349-1361.
    [18] BARBOSA J M O, KAUSEL E. The thin-layer method in a cross-anisotropic 3D space[J]. International Journal for Numerical Method in Engineering, 2012, 89: 537-560.
    [19] 唐和生, 王远功, 陈 镕. 轴对称横观各向同性层状弹性半空间问题受力分析[J]. 上海力学, 1999, 20(1): 64-69. (TANG He-sheng, WANG Yuan-gong, CHEN Rong. Stress analysis of axisymmetrical problems in transversely isotropic multilayered elastic half space[J]. Shanghai Journal of Mechanics, 1999, 20(1): 64-69. (in Chinese))
    [20] 唐和生, 薛松涛, 陈 镕, 等. 格林函数在横观各向同性层状地基沉降中的应用[J]. 同济大学学报, 2000, 28(5): 626-630. (TANG He-sheng, XUE Song-tao, CHEN Rong, et al. Application of the green’s functions for the settlement of transversely-isotropic layered soil[J]. Journal of Tongji University, 2000, 28(5): 626-630. (in Chinese))
    [21] 艾智勇, 胡亚东. 3D横观各向同性地基非耦合解析层元[J]. 岩土工程学报, 2013, 35(2): 717-720. (AI Zhi-yong, HU Ya-dong, Uncoupled analytical layer-element for 3D transversely isotropic multilayered foundation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 717-720. (in Chinese))
    [22] AI Z Y, LI Z X, CANG N R. Analytical layer-element solution to axisymmetric dynamic response of transversely isotropic multilayered half-space[J]. Soil Dynamics and Earthquake Engineering, 2014, 60: 22-30.
    [23] ZHONG W X, LIN J H, GAO Q. The precise computation for wave propagation in stratified materials[J]. Int J Numer Methods Eng, 2004, 60: 11-25.
    [24] GAO Q, LIN J H, ZHONG W X, et al. A precise numerical method for Rayleigh waves in a stratified half space[J]. International Journal for Numerical Methods in Engineering 2006, 67: 771-786.
    [25] GAO Q, ZHONG W X, HOWSON W P. A precise method for solving wave propagation problems in layered anisotropic media[J]. Wave Motion; 2004, 40: 191-207.
    [26] 林 皋, 韩泽军, 李建波. 层状地基任意形状刚性基础动力响应求解[J]. 力学学报, 2012, 44(6): 1016-1027. (LIN Gao, HAN Ze-jun, LI Jian-bo. Solution of the dynamic response of rigid foundation of arbitrary shape on multi-layered soil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1016-1027. (in Chinese))
    [27] SHENG X, JONES C J C, PETYT M. Ground vibration generated by a harmonic load acting on a railway track[J]. Journal of Sound and Vibration, 1999, 225: 3-28.
  • 期刊类型引用(12)

    1. 王鹏,王海,孙利琴,应本林,程熙洋,李永辉. 应力作用下黄泛区粉土的孔隙特征研究. 四川建筑科学研究. 2025(02): 60-69 . 百度学术
    2. 武亚军,岳皓凡,臧学轲,张旭东,章长松,吴金红. 不同黏粒含量土的固结和重金属吸附解吸特性. 长江科学院院报. 2025(05): 88-96 . 百度学术
    3. 李珊,李培勇. 硅酸钾溶液对黏性土体微观结构的影响研究. 广东建材. 2024(01): 9-13 . 百度学术
    4. 王静,胡金虎,杨亚源,周邦龙,任帅. 分级循环荷载下粉土动力特性研究. 水利与建筑工程学报. 2024(06): 166-171 . 百度学术
    5. 曹胜飞,刘月妙,谢敬礼,张奇,杨明桃,高玉峰. 高放废物处置缓冲材料砌块抗压强度特性试验研究. 世界核地质科学. 2023(01): 58-67 . 百度学术
    6. 刘猛,许晨曦,孟凡会,高静静,白赟,宋琳琳. 粉土颗粒分析试验影响因素分析. 济南大学学报(自然科学版). 2023(04): 493-498 . 百度学术
    7. 沈吴钦,吴昌将,张军,毛良根,仲栋宇. 深基坑模型试验中相似土配比及其微观表征研究. 人民长江. 2023(09): 236-244 . 百度学术
    8. 张岩,樊亮,王林,侯佳林,谷传庆. 黏粒含量对粉土抗压强度的影响. 路基工程. 2022(01): 44-48 . 百度学术
    9. 谌文武,贾博博,覃一伦,贾全全. 融雪入渗下含硫酸盐遗址土的冻融劣化特征. 兰州大学学报(自然科学版). 2022(04): 521-527 . 百度学术
    10. 尹振华,张建明,张虎,王宏磊. 融化压缩下水泥改良冻土的微观孔隙特征演变. 水文地质工程地质. 2021(02): 97-105 . 百度学术
    11. 付佳佳,王炼,尤苏南,王旭东. 黏-砂混合土压缩特性与微观结构特征关系研究. 长江科学院院报. 2021(05): 115-122 . 百度学术
    12. 何建新,糟凯龙,杨海华. 塔里木河胡杨实现自我恢复的新方法探索. 水电能源科学. 2021(07): 33-37 . 百度学术

    其他类型引用(19)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 31
出版历程
  • 收稿日期:  2015-09-22
  • 发布日期:  2016-12-24

目录

    /

    返回文章
    返回