• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂土的UH模型

姚仰平, 刘林, 罗汀

姚仰平, 刘林, 罗汀. 砂土的UH模型[J]. 岩土工程学报, 2016, 38(12): 2147-2153. DOI: 10.11779/CJGE201612002
引用本文: 姚仰平, 刘林, 罗汀. 砂土的UH模型[J]. 岩土工程学报, 2016, 38(12): 2147-2153. DOI: 10.11779/CJGE201612002
YAO Yang-ping, LIU Lin, LUO Ting. UH model for sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147-2153. DOI: 10.11779/CJGE201612002
Citation: YAO Yang-ping, LIU Lin, LUO Ting. UH model for sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147-2153. DOI: 10.11779/CJGE201612002

砂土的UH模型  English Version

基金项目: 国家重点基础研究发展计划(“973计划”)项目(2014CB047001); 国家自然科学基金项目(51579005,11272031)
详细信息
    作者简介:

    姚仰平(1960- ),男,教授,博士生导师,主要从事土的本构关系和机场高填方研究。E-mail: ypyao@buaa.edu.cn。

UH model for sands

  • 摘要: 在UH(Unified Hardening,统一硬化)模型的基础上,通过分析砂土特性,建立了砂土的本构模型。该模型具有以下几个特点:①通过引入压硬性参量,模型可以描述在e-lnp空间内砂土的等向压缩线为曲线的特性;②通过引入剪胀性参数,模型可以合理描述砂土的剪胀特性,即松砂的特征状态应力比较大,密砂的特征状态应力比较小的特性;③通过引入临界状态参数来建立砂土的水滴形屈服面,模型可以合理描述临界状态线(CSL)在e-lnp空间内的位置。相对于UH模型,本文所提的砂土模型只增加了3个材料参数,且3个参数都可通过室内常规试验确定。最后,利用该模型对砂土排水和不排水试验进行预测,预测结果与试验结果吻合很好。
    Abstract: By analyzing the behaviours of sands, a constitutive model for sands is proposed based on the UH model. The model has the following characteristics: (1) the model can describe that the isotropic compression line of sands is a curve in the e-lnp plane by introducing a compressive hardening parameter. (2) The stress ratio at the characteristic state point of loose sand is relatively large, and that of dense sand is relatively small, which can be described by the new model by introducing a dilatancy parameter. (3) The yield surface of sands is proposed by introducing a critical state parameter, and the position of the critical state line (CSL) in the e-lnp plane can be accurately described by the proposed model. Compared with the UH model, the proposed model requires three additional sand parameters which can be determined by the conventional triaxial tests. Finally, the validity of the new model is confirmed by the data from triaxial drained and undrained compression tests for sands.
  • [1] LADE P V, DUNCAN J M. Elasto-plastic stress-strain theory for cohesionless soil[J]. Journal of the Geotechnical Engineering Division, 1975, 101(10): 1037-1053.
    [2] BEEN K, JEFFERIES M G, HACHEY J. The critical state of sands[J]. Géotechnique, 1992, 42 (4): 655-663.
    [3] LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460.
    [4] POOROOSHASB H B, HOLUBEC I, SHERBOURNE A N. Yielding and flow of sand in triaxial compression, Part I[J]. Canadian Geotechnical Journal, 1966, 3(5): 179-190.
    [5] POOROOSHASB H B, HOLUBEC I, SHERBOURNE A N. Yielding and flow of sand in triaxial compression, Part II[J]. Canadian Geotechnical Journal, 1967, 4(4): 376-397.
    [6] YAO Y P, SUN D A, LUO T. A critical state model for sands dependent on stress and density[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2004, 28: 323-337.
    [7] YAO Y P, HOU W, ZHOU A N. Constitutive model for overconsolidated clays[J]. Science China Technological Sciences, 2008, 51(2): 179-191.
    [8] YAO Y P, HOU W, ZHOU A N. UH model: three dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469.
    [9] LADE P V, BOOP P A. Relative density effects on drained sand behavior at high pressures[J]. Soils and Foundations, 2005, 45: 1-13.
    [10] PESTANA J M, WHITTLE A J. Formulation of a unified constitutive model for clays and sands[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23: 1215-1243.
    [11] SHENG D C, YAO Y P, CARTER J P. A volume-stress model for sands under isotropic and critical stress states[J]. Canadian Geotechnical Journal, 2008, 45(11): 1639-1645.
    [12] ASAOKA A. An elasto-plastic description of two distinct volume change mechanisms of soils[J]. Soils and Foundations, 2002, 42(5): 47-57.
    [13] VERDUGO R, ISHIHARA K. The steady state of sandy soils[J]. Soil and Foundations, 1996, 36: 81-91.
    [14] 姚仰平, 余亚妮. 基于统一硬化参数的砂土临界状态本构 模型[J]. 岩土工程学报, 2011, 33(12): 1827-1832. (YAO Yang-ping, YU Ya-ni. Extended critical state constitutive model for sand based on unified hardening parameter[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1827-1832. (in Chinese))
    [15] ISHIHARA K. Liquefaction and flow failure during earthquakes[J]. Géotechnique, 1996, 43(3): 351-415.
  • 期刊类型引用(13)

    1. 严辉,林沛元. 深圳市岩溶地层标准贯入击数神经网络模型. 地质科技通报. 2025(02): 305-321 . 百度学术
    2. 李书兆,孙国栋,申辰,李文逵,罗进华,王教龙. 基于深度学习和地震数据的海上风电场CPT预测研究. 工程地球物理学报. 2025(02): 216-226 . 百度学术
    3. 崔纪飞,柏林,饶平平,康陈俊杰,张锟. 基于人工智能算法的氯盐侵蚀混凝土预测模型. 硅酸盐通报. 2024(02): 439-447 . 百度学术
    4. 段文魁,王来发,晁华俊,明锋. 冻结过程中土体导热系数预测模型. 中国农村水利水电. 2024(05): 47-52 . 百度学术
    5. 唐少容,殷磊,杨强,柯德秀. 微胶囊相变材料改良粉砂土的导热系数及预测模型. 中国粉体技术. 2024(03): 112-123 . 百度学术
    6. 姚兆明,王洵,齐健. 土体导热系数智能方法预测及影响因素敏感性分析. 工程热物理学报. 2024(05): 1440-1449 . 百度学术
    7. 邓志兴,谢康,李泰灃,王武斌,郝哲睿,李佳珅. 基于粗颗粒嵌锁点高铁级配碎石振动压实质量控制新方法. 岩土力学. 2024(06): 1835-1849 . 百度学术
    8. 李林,左林龙,胡涛涛,宋博恺. 基于孔压静力触探试验测试数据的原位固结系数物理信息神经网络反演方法. 岩土力学. 2024(10): 2889-2899 . 百度学术
    9. 王红旗,李栋伟,钟石明,贾志文,王泽成,陈鑫,秦子鹏. 石灰改良红黏土导热系数影响因素及模型预测. 科学技术与工程. 2023(05): 2084-2092 . 百度学术
    10. 王才进,武猛,蔡国军,赵泽宁,刘松玉. 基于多元分布模型预测土体热阻系数. 岩石力学与工程学报. 2023(S1): 3674-3686 . 百度学术
    11. 王健翔,任瑞琪. 电学等效的稳态平板导热系数测试实验装置. 电子制作. 2023(11): 105-109 . 百度学术
    12. 王才进,武猛,杨洋,蔡国军,刘松玉,何欢,常建新. 基于生物地理优化的人工神经网络模型预测软土的固结系数. 岩土力学. 2023(10): 3022-3030 . 百度学术
    13. 徐明,康雅晶,马斯斯,张鹤. 基于贝叶斯优化的XGBoost模型预测路基回弹模量. 公路交通科技. 2023(11): 51-60 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  508
  • HTML全文浏览量:  23
  • PDF下载量:  479
  • 被引次数: 15
出版历程
  • 收稿日期:  2016-08-17
  • 发布日期:  2016-12-24

目录

    /

    返回文章
    返回