• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

水泥固化滨海风积砂力学特性试验及细观数值仿真

蔡燕燕, 江浩川, 俞缙, 涂兵雄, 刘士雨

蔡燕燕, 江浩川, 俞缙, 涂兵雄, 刘士雨. 水泥固化滨海风积砂力学特性试验及细观数值仿真[J]. 岩土工程学报, 2016, 38(11): 1973-1980. DOI: 10.11779/CJGE201611006
引用本文: 蔡燕燕, 江浩川, 俞缙, 涂兵雄, 刘士雨. 水泥固化滨海风积砂力学特性试验及细观数值仿真[J]. 岩土工程学报, 2016, 38(11): 1973-1980. DOI: 10.11779/CJGE201611006
CAI Yan-yan, JIANG Hao-chuan, YU Jin, TU Bing-xiong, LIU Shi-yu. Experimental study on mechanical properties and mesoscopic numerical simulation of cement-solidified coastal aeolian sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1973-1980. DOI: 10.11779/CJGE201611006
Citation: CAI Yan-yan, JIANG Hao-chuan, YU Jin, TU Bing-xiong, LIU Shi-yu. Experimental study on mechanical properties and mesoscopic numerical simulation of cement-solidified coastal aeolian sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1973-1980. DOI: 10.11779/CJGE201611006

水泥固化滨海风积砂力学特性试验及细观数值仿真  English Version

基金项目: 国家自然科学基金项目(51679093,51308234,51408242); 2015年福建省新世纪优秀人才支持计划项目; 重庆交通大学国家内河航道整治工程技术研究中心暨水利水运工程教育部重点实验室开放基金项目(SLK2014A02)
详细信息
    作者简介:

    蔡燕燕(1982- ),女,福建晋江人,博士,副教授,主要从事岩土力学与室内实验等方面的研究工作。E-mail: yycai@hqu.edu.cn。

Experimental study on mechanical properties and mesoscopic numerical simulation of cement-solidified coastal aeolian sands

  • 摘要: 滨海风积砂因结构松散、自稳能力差、级配不良不易压实,被视为一种特殊土。水泥固化是常用的加固手段,而水泥剂量对风积砂力学性能的影响规律及细观作用机制目前尚不清楚。利用GDS土工三轴试验仪,对不同水泥剂量(0%,4%,6%)的水泥固化滨海风积砂进行不同有效围压(50,100,150 kPa)下的CD试验。结合室内试验数据和水泥砂样显微照片,建立水泥固化滨海风积砂细观结构的颗粒流PFC2D模型,进行三轴试验的细观数值仿真分析。研究结果表明,水泥固化滨海风积砂应力-应变关系呈应变软化型,水泥剂量对滨海风积砂强度贡献明显,对体变影响相对较小。采用颗粒平行黏结方式的颗粒流数值仿真能有效反映水泥固化滨海风积砂的细观力学特性,水泥剂量对水泥固化滨海风积砂的黏结破坏数、配位数、位移场均有显著影响。
    Abstract: Coastal aeolian sand is treated as a kind of special soil for its loose structure, poor stability and poor gradation. Cement solidification is a common method for strengthening. However, the influence rule and microscopic mechanism of cement dosage on the mechanical properties of aeolian sand are still unclear. The CD tests under various effective confining pressures (50, 100 and 150 kPa) on aeolian sand solidified by different amounts (0%, 4% and 6%) of cement are carried out using GDS triaxial apparatus. Based on the micrograph of cemented sand and experimental data, the microstructural models for cemented coastal aeolian sand are established using PFC2D. The mesoscopic numerical analysis of triaxial tests is presented. The results show that the cemented coastal aeolian sand is strain-softened. And the cement dosage makes great contribution to the strength of coastal aeolian sand, but less influence on the volumetric strain. The PFC model with parallel connection can effectively reflect the main mechanical behaviors of cemented coastal aeolian sand. The cement dosage has a significant impact on bond-breaking number, coordination number and displacement field for the cemented coastal aeolian sand.
  • [1] BELL F G. Lime stabilization of clay minerals and soils[J]. Engineering Geology, 1996, 42(6): 223-237.
    [2] ISMAIL M A,JOER H A,SIM W H, et al. Effect of cement type on shear behavior of cemented calcareous soil[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2002, 128(6): 520-529.
    [3] 黄 新, 周国钧. 水泥加固土硬化机理初探[J]. 岩土工程学报, 1994, 16(1): 62-68. (HUANG Xin, ZHOU Guo-jun. Hardening mechanism of cement-stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(1): 62-68. (in Chinese))
    [4] CUCCOVILLO T, COOP MR. On the mechanics of structured sandss[J]. Géotechnique, 1999, 49(6): 741-760.
    [5] CUNDALL P A, STRACK O D L. The discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
    [6] IANG M J, YU H S, LEROUEIL S. A simple and efficient approach to capturing bonding effect in natural sands by discrete element method[J]. International Journal for Numerical Methods in Engineering, 2007, 69(6): 1158-1193.
    [7] JIANG M J, YU H S, HARRIS D. Bonds rolling resistance and its effect on yielding of bonded granulates by DEM analyses[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8): 723-761.
    [8] WANG Y H, LEUNG S C. A particulate scale investigation of cemented sands behavior[J]. Canadian Geotechnical Journal,2008, 45(1): 29-44.
    [9] WANG Y H,LEUNG S C. Characterization of cemented sands by experimental and numerical investigations[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2008, 134(7): 992-1004.
    [10] 蒋明镜, 孙渝刚. 人工胶结砂土力学特性的离散元模拟[J]. 岩土力学, 2011, 32(6): 1849-1856. (JIANG Ming-jing, SUN Yu-gang. A DEM modelling of mechanical behaviour of artificially cemented sands[J]. Rock and Soil Mechanics, 2011, 32(6): 1849-1856. (in Chinese))
    [11] 胡舜娥, 蔡燕燕, 俞 缙, 等. 水泥固化滨海风积砂三轴试验研究[J]. 地下空间与工程学报, 2014, 10(3): 573-579. (HU Shu-ne, CAI Yan-yan, YU Jin, et al. Experimental study of triaxial test of cement solidified coastal aeolian sands[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(3): 573-579. (in Chinese))
    [12] 王树娟. 掺风积沙水泥复合土力学性能的研究[D]. 呼和浩特: 内蒙古农业大学, 2009. (WANG Shu-juan. The wind deposited sands mixed cement composite soil mechanics performance of research[D]. Huhehaote: Inner Mongolia Agricultural University, 2009. (in Chinese))
    [13] SHINOHARA K, OIDA M, GOLMAN B. Effect of particle shape on angle of internal friction by triaxial compression test[J]. Powder Technology, 2000, 107(3): 131-136.
    [14] KANDASAMI R K, MURTHY T G. Effect of intermediate principal stress on the mechanical behavior of angular sand[J]. Geotechnical Special Publication, 2014(236): 406-415.
    [15] 周 健, 贾敏才. 土工细观模型试验与数值模拟[M]. 北京: 科学出版社, 2008. (ZHOU Jian, JIA Min-cai. Soil fine view model test and numerical simulation[M]. Beijing: Science Press, 2008. (in Chinese))
    [16] 周 健, 池 永, 池毓蔚, 等. 颗粒流方法及PFC 2D 程序[J]. 岩土力学, 2000, 21(3): 271-274. (ZHOU Jian, CHI Yong, CHI Yu-wei, et al. The method of particle flow and PFC 2D code[J]. Rock and Soil Mechanics, 2000, 21(3): 271-274. (in Chinese))
    [17] 徐金明, 谢芝蕾, 贾海涛. 石灰岩细观力学特性的颗粒流模拟[J]. 岩土力学, 2010, 31(2): 390-395. (XU Jin-ming, XIE Zhi-lei, JIA Hai-tao. Simulation of mesomechanical properties of limestone using particle flow code[J]. Rock and Soil Mechanics, 2010, 31(2): 390-395. (in Chinese))
    [18] 尹小涛, 葛修润, 李春光, 等. 加载速率对岩石材料力学行为的影响[J]. 岩石力学与工程学报, 2010, 29(1): 2610-2615. (YIN Xiao-tao, GE Xiu-run, LI Chun-guang, et al. Influences of loading rates on mechanical behaviors of rock materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(1): 2610-2615. (in Chinese))
  • 期刊类型引用(3)

    1. 朱艳. 邹城地区黏土体-结构面接触渗透下渗流侵蚀试验研究. 广东水利水电. 2024(08): 20-24 . 百度学术
    2. 胡嘉英,邹光华,徐祚卉,陈学习,杨涛,师皓宇,周爱桃. 含瓦斯煤岩构造界面剪切-渗流耦合试验方法及教学设计实践. 实验技术与管理. 2024(09): 61-72 . 百度学术
    3. 刘健,杨浩,崔晓琳. 围压作用下土-结构接触渗流特性. 山东大学学报(工学版). 2023(03): 60-68 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 8
出版历程
  • 收稿日期:  2015-10-12
  • 发布日期:  2016-11-19

目录

    /

    返回文章
    返回