Mechanical behaviors and field tests of steel sleeves during shield receiving
-
摘要: 富水砂性地层中在盾构接收时极易发生涌水、涌砂等事故,是盾构施工过程中的重大风险源之一。以上海轨道交通11号线龙华路站钢套筒接收工法盾构接收的工程实践为依托,首先采用数值模拟对钢套筒在盾构接收施工期间的受力和变形规律进行了分析,然后通过钢套筒变形和防汛墙沉降的现场实测数据验证了钢套筒接收工法的可行性。结果表明,盾构推进使钢套筒结构的最大拉应力由后端板逐渐发展为筒体与地连墙连接部位的底部,筒体结构的环向应力为纵向应力的2~7倍、腰部以下的环向轴力增长明显、腰部累计变形将近10 mm,筒体底部的纵向应力增长明显、腰部的纵向弯矩变化明显。盾构推进导致筒体结构的底部外张、腰部内凹,筒体的径向变形由横鸭蛋变为竖鸭蛋并最终变为8字形,椭圆度达到3‰,但是盾构推进对后端板的应力和位移变化均不明显。筒体与地连墙间的接缝、钢套筒分块间的腰部接缝和底部接缝均是盾构接收中钢套筒结构受力和变形的薄弱部位。盾构完全进入钢套筒后,钢套筒结构的受力和变形最为不利。工程实测表明,采用钢套筒接收工法进行盾构接收安全、可行,但在工程实践中应重视腰部、底部和后端板位移实测数据的大的波动,规范施工操作并加强监控。Abstract: Water inrush and gushing can be easily induced during shield receiving in water rich sandy ground. Based on shield receiving practice at Longhua Station of Shanghai Metro Line 11, the rules of stress and deformation of steel sleeves are analyzed by using the FEM numerical method, and the field tests on deformation of steel sleeves and settlement of flood wall are carried out to verify the feasibility. The results show that the maximum tension stress location gradually changes from the back plate to the bottom of connection area between sleeve and diaphragm wall during shield arriving. The circumferential stress is 2 to 7 times the longitudinal stress. The mechanical states at the following locations change obviously: circumferential axial force below the spring, longitudinal axial force at the bottom and longitudinal moment at the spring, and the accumulated deformation at the spring reaches 10 mm. As the shield advances, the bottom will deform outward while the spring inward, therefore, the radial deformation of the sleeve changes from a lying duck egg to a standing duck egg, and finally similar to the shape of 8, with the ovality reaching nearly 3‰. However, the stress and strain have no significant changes at the back plate because of bracing constraint. The joints between the steel sleeve and the diaphragm wall and those at the spring and the bottom of blocks are the weak positions of steel sleeve for stress and deformation control during shield receiving, and the most disadvantage state occurs when the shield is completely into the steel sleeve. The in-situ measurements show that the steel sleeve receiving technology is safe and feasible when adopting the current design parameters. However, the large fluctuations and instability of field data at the spring, bottom and back plate should be paid great attention to, and standard operating
-
[1] LIAO S M, LI W L, FAN Y Y, et al. Model test on lateral loading performance of secant pile walls[J]. Journal of Performance of Constructed Facilities, 2014, 28(2): 391-401. [2] 秦爱芳, 李永和. 人工土层冻结法加固在盾构出洞施工中的应用[J]. 岩土力学, 2004, 25(增刊2): 449-452. (QIN Ai-fang, LI Yong-he. Application of artificial soil freezing reinforcement method to shield tunneling setting out[J]. Rock and Soil Mechanics, 2004, 25(S2): 449-452. (in Chinese)) [3] 靳世鹤. 南京长江隧道盾构始发井深基坑降水方案设计[J]. 现代隧道技术, 2008, 45(3): 46-49. (JIN Shi-he. Dewatering plan for a deep shield lanching pit of Nanjing Yangtze River tunnel[J]. Modern Tunnelling Technology, 2008, 45(3): 46-49. (in Chinese)) [4] 李 罡, 黄宏伟. 超大直径盾构水中进洞风险分析[J]. 地下空间与工程学报, 2009, 5(增刊): 1422-1426. (LI Gang, HUANG Hong-wei. Risk analysis on arriving into shaft of super large diameter shield machine under water[J]. Chinese Journal of Underground Space and Engineering, 2009, 5(S0): 1422-1426. (in Chinese)) [5] 王文灿. 冻结法和水平注浆在天津地铁盾构接收中的组合应用[J]. 现代隧道技术, 2013, 50(3): 183-190. (WANG Wen-can. Application of the freezing and horizontal grouting methods to the shield arrival for the Tianjin metro[J]. Modern Tunnelling Technology, 2013, 50(3): 183-190. (in Chinese)) [6] 陈珊东. 盾构到达接收辅助装置的使用分析[J]. 隧道建设, 2010, 30(4): 492-494. (CHEN Shan-dong. Analysis on application of steel sleeves in shield arrivals[J]. Tunnel Construction, 2010, 30(4): 492-494. (in Chinese)) [7] 郑 石, 鞠世健. 泥水平衡盾构到达钢套筒辅助接收施工技术[J]. 现代隧道技术, 2010, 47(6): 51-56. (ZHENG Shi, JU Shi-jian. Technology of steel reception sleeve for slurry shield[J]. Modern Tunnelling Technology, 2010, 47(6): 51-56. (in Chinese)) [8] 王 健. 盾构到达钢套筒辅助接收系统的改进设计及施工[J]. 现代交通技术, 2014, 11(4): 59-62. (WANG Jian. Improved design and construction technology of steel sleeves in shield auxiliary arriving system[J]. Modern Transportation Technology, 2014, 11(4): 59-62. (in Chinese)) [9] 赵立锋. 土压平衡盾构到达钢套筒辅助施工接收技术[J]. 铁道标准设计, 2013(8): 89-93. (ZHAO Li-feng. Auxiliary construction technology with steel sleeve used for the arrival of soil pressure balance shield[J]. Railway Standard Design, 2013(8): 89-93. (in Chinese)) -
期刊类型引用(7)
1. 李俊毅. 电渗法加固土体技术的探究与展望. 岩土工程技术. 2024(02): 238-245 . 百度学术
2. 王炳辉,栾佶,张雷,金海晖,张文博. 电渗热固结处理顶管废弃泥浆的减量化研究. 地下空间与工程学报. 2024(02): 507-517 . 百度学术
3. 王华杰. 电渗试验中土体电阻变化规律探究. 科技创新与应用. 2024(34): 73-76 . 百度学术
4. 王炳辉,李贵豪,张雷,金海晖,吴涛,贾仲泽,金丹丹. 不同掺加材料对软土电渗加固效果的影响. 自然灾害学报. 2024(06): 86-97 . 百度学术
5. 桂书润,王龙嘉,班子越,赵飞燕,徐欣. 电渗联合堆载预压及化学法加速淤筑土固结的试验研究. 河南科技. 2023(05): 86-90 . 百度学术
6. 陈海鹏. 引水隧洞混凝土裂缝化学灌浆加固技术研究. 陕西水利. 2023(10): 154-156 . 百度学术
7. 李丽华,杨俊杰,徐维生,宋杨,曹毓. 电渗法联合化学固化法改良淤泥试验. 中国科技论文. 2022(12): 1340-1345 . 百度学术
其他类型引用(3)
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量:
- 被引次数: 10