• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

堆石料尺寸效应研究面临的问题及多尺度三轴试验平台

孔宪京, 刘京茂, 邹德高

孔宪京, 刘京茂, 邹德高. 堆石料尺寸效应研究面临的问题及多尺度三轴试验平台[J]. 岩土工程学报, 2016, 38(11): 1941-1947. DOI: 10.11779/CJGE201611002
引用本文: 孔宪京, 刘京茂, 邹德高. 堆石料尺寸效应研究面临的问题及多尺度三轴试验平台[J]. 岩土工程学报, 2016, 38(11): 1941-1947. DOI: 10.11779/CJGE201611002
KONG Xian-jing, LIU Jing-mao, ZOU De-gao. Scale effect of rockfill and multiple-scale triaxial test platform[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1941-1947. DOI: 10.11779/CJGE201611002
Citation: KONG Xian-jing, LIU Jing-mao, ZOU De-gao. Scale effect of rockfill and multiple-scale triaxial test platform[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1941-1947. DOI: 10.11779/CJGE201611002

堆石料尺寸效应研究面临的问题及多尺度三轴试验平台  English Version

基金项目: 国家自然科学基金项目(51678113,51379028,51279025)
详细信息
    作者简介:

    孔宪京(1952- ),男,教授,主要从事高土石坝抗震和岩土地震工程方面的研究工作。E-mail: kongxj@dlut.edu.cn。

Scale effect of rockfill and multiple-scale triaxial test platform

  • 摘要: 堆石料尺寸效应一直都是困扰工程设计和安全评价的一个难题。由于缺少较大尺寸的试验仪器和缺乏合理的尺寸效应评价体系,堆石料缩尺引起的强度和变形的变化规律还没有统一的认识,对缩尺引起的强度和变形差异的机理还不清楚。对相关研究涉及到的问题进行了分析、总结。笔者认为一套合理的堆石料尺寸效应评价体系,应该考虑试样边界约束尺寸效应、缩尺方法和标准及单粒细观特性尺寸效应等对宏观粒组变形特性的影响。为解决堆石料尺寸效应难题,大连理工大学近期完成了国内第一个超大三轴仪(试样直径800,1000 mm),连同早期开发和研制的系列三轴仪(试样直径100,200,300 mm)构成了多尺度三轴试验研究平台,为深入、系统地研究堆石料静动强度与变形的尺寸效应提供了技术支撑。
    Abstract: The scale effect of rockfill material is one of the main problems in structural analysis for large civil engineering. Due to the lack of super large-scale apparatus, the rockfill commonly used in large civil engineering must be scaled in laboratory tests, and the mechanism of scale effect has not been yet clear. In this study, the previous researches related to scale effect are summarized and discussed. It is recommended that the evaluation system of scale effect of rockfill should consider the influences of sample sizes, modeling techniques and single-particle characteristics on the particle-group behaviors. In order to solve the scale effect of rockfill, the first super large triaxial apparatus (specimen diameter: 800 mm, 1000 mm) in China is developed in Dalian University of Technology. Combining with a series of the triaxial devices (specimen diameter: 100, 200 and 300 mm), a multiple-scale triaxial test platform is constructed. The platform may provide significant technical support for the deep and systematical researches on the scale effect of rockfill under both static and dynamic conditions.
  • [1] PEN M AN A D M , M ITCH ELL P B. Initial behaviour of scammonden dam[C]// Transactions of 10th International Congress on Large Dam s, Montreal, 1970: 723-747.
    [2] MARACHI N D. Strength and deformation characteristics of rockfillmaterials[D]. Berkeley: University of California, 1969.
    [3] FRASSONI A, HEGG U, ROSSI P P. Large-scale laboratory tests for the mechanical characterization of granular materials for embankment dams[M]. Rome: ISMES, 1982.
    [4] BOLTON M D, LAU C K. Scale effects arising from particle size[C]// Proceedings of the International Conference on Geotechnical Centrifuge Modeling. Paris, 1988: 127-131.
    [5] VARADARAJAN A, SHARMA K G, Venkatachalam K, et al. Testing and modeling two rockfill materials[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(3): 206-218.
    [6] HONKANADAVAR N P, GUPTA S L, RATNAM M. Effect of particle size and confining pressure on shear strength parameter of rockfill materials[J]. Academic Research, 2012, 1(1): 49-63.
    [7] LEPS T M. Review of shearing strength of rockfill[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(SM4): 1159-1170.
    [8] MARACHI N, CHAN C. K, SEED H B. Evaluation of properties of rockfillmaterials[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(SM1): 95-114.
    [9] MARSAL R J. Large scale testing of rockfillmaterials[J]. Journal of Soil Mechanics and Foundation Division, 1967, 93(2): 27-43.
    [10] 鎌田正孝. 大型三軸圧縮試験機の性能について[J]. フジタ工業技術研究所報, 1975, 11: 51-56. (MASATAKA K. The performance of the large scale triaxialapparatus[J]. Journal of Fujita Technical Research Institute, 1975, 11: 51-56. (in Japanese))
    [11] 福島伸二, 北島明. 超大型三軸圧縮試験装置の歩みとその果たした役割[J]. 土と基礎, 1998, 46(11): 29-32. (FUKUSHIMA S, KITAJIMA A. History and contribution of super large scale triaxial compression testing apparatus[J]. Soil Mechanics and Foundation Engineering, 1998, 46(11), 29-32. (in Japanese))
    [12] HU W, DANO C, HICHER P, ET A L. Effect of sample size on the behavior of granular materials[J]. ASTM Geotechnical Testing Journal, 2011, 34(3): 186-197.
    [13] INDRARATNA B, WIJEWARDENA L, BALASUBRAMANIAM A S. Large-scale triaxial testing of grey wacke rockfill[J]. Géotechnique, 1993, 43(1): 37-51.
    [14] SL 237—1999土工试验规程[S]. 1999. (SL 237—1999 Specification of soil test[S]. 1999. (in Chinese))
    [15] ASTM. Consolidated drained triaxial compression test for soils-d7181[S]. West Conshohocken, PA, 2011.
    [16] HOLTZ W G, GIBBS H J. Triaxial shear tests on pervious gravelly soils[J]. Journal of the Soil Mechanics and Foundations Division, 1956, 82(1): 1-22.
    [17] DAS NEVES E M. Advances in rockfill structures[M]. Berlin: Springer Science & Business Media, 1991.
    [18] 司洪洋. 大型三轴试验的选型问题[J]. 勘察科学技术. 1988(1): 12-16. (SI Hong-yang. Scale selection of large triaxialtests[J]. Site Investigation Science and Technology, 1988(1): 12-16. (in Chinese))
    [19] 郭庆国. 粗粒土的工程特性及应用[M]. 郑州: 黄河水利出版社, 1999. (GUO Qing-guo. Engineering character and application of aggregate soil[M]. Zhengzhou: Yellow River Water Press, 1999. (in Chinese))
    [20] 王继庄. 粗粒料的变形特性和缩尺效应[J]. 岩土工程学报, 1994, 16(4): 89-95. (WANG Ji-zhuang. Deformation characteristics of coarse aggregate and scale effect[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(4): 89-95. (in Chinese))
    [21] 朱俊高, 刘 忠, 翁厚洋, 等. 试样尺寸对粗粒土强度及变形试验影响研究[J]. 四川大学学报(工程科学版), 2012, 44(6): 92-96. (ZHU Jun-gao, LIU Zhong, WENG Hou-yang, et al. Study on effect of specimen size upon strength and deformation behaviour of coarse-grained soil in triaxialtest[J]. Journal of Sichuan University (Engineering Science Edition), 2012, 44(6): 92-96. (in Chinese))
    [22] 陈仲颐, 周景星, 王洪瑾, 等. 土力学[M]. 北京: 清华大学出版社, 1994. (CHEN Zhong-yi, ZHOU Jing-xing, WANG Hong-jin. Soil mechanics[M]. Beijing: Tsinghua University Press, 1994. (in Chinese))
    [23] OMAR T, SADREKARIMI A. Specimen size effects on behavior of loose sand in triaxial compression tests[J]. Canadian Geotechnical Journal, 2014, 52: 1-15.
    [24] FUMAGALLI E, MOSCONI B, ROSSI P P. Laboratory tests on materials and static models for rockfill dams[C]// 10th Int Congress on Large Dams. Montreal, 1970: 531-551.
    [25] TIMOSHENKO S P, GOODIER J N. Theory of elasticity[M]. New York: McGraw-Hill, 1951.
    [26] LE PEN L M, POWRIE W, ZERVOS A, et al. Dependence of shape on particle size for a crushed rock railway ballast[J]. Granular Matter, 2013, 15(6): 849-861.
    [27] FUMAGALLI E. Tests on cohesionless materials for rockfill dams[J]. Journal of the Soil Mechanics and Foundations Division, 1969, 95(1): 313-332.
    [28] VALLERGA B A, SEED H B, MONISMITH C L, et al. Effect of shape, size and surface roughness of aggregate particles on the strength of granular materials[J]. Special Technical Publication, 1957, 212: 63-76.
    [29] HU L, PU J. Testing and modeling of soil-structure interface[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(8): 851-860.
    [30] NAKATA Y, KATO Y, HYODO M, et al. One-dimensional compression behaviour of uniformly graded sand related to single particle crushing strength[J]. Soils and Foundations, 2001, 41(2): 39-51.
    [31] FROSSARD E, HU W, DANO C, et al. Rockfill shear strength evaluation: a rational method based on size effects[J]. Géotechnique, 2012, 62(5): 415-427.
    [32] ROWE P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[C]// Proceedings of the Royal Society of London A Mathematical, Physical and Engineering Sciences. London: The Royal Society, 1962.
    [33] VERDUGO R, DE LA HOZ K. Strength and stiffness of coarse granular soils[J]. Solid Mechanics and its Application, 2007, 46: 243-252.
    [34] DE LA HOZ ALVAREZ K. Estimación de los parámetros de resistencia al corte en suelosgranularesgruesos[D]. Chile: Universidad de Chile, 2007. (DE LA HOZ ALVAREZ K. Assessment of shear strength properties of coarse granular soils[D]. Chile: University of Chile, 2007. (Santiago))
    [35] 李 翀, 何昌荣, 王 琛, 等. 粗粒料大型三轴试验的尺寸效应研究[J]. 岩土力学, 2008, 29(增刊1): 563-566. (LI Chong, HE Chang-rong, WANG Chen, et al. Study of scale effect of large-scale triaxial test of coarse-grained meterials[J]. Rock and Soil Mechanics, 2008, 29(S1): 563-566. (in Chinese))
    [36] 凌 华, 殷宗泽, 朱俊高, 等. 堆石料强度的缩尺效应试验研究[J]. 河海大学学报 (自然科学版), 2011, 39(5): 540-544. (LING Hua, YIN Zong-ze, ZHU Jun-Gao, et al. Experimental study of scale effect on strength of rock fillmaterials[J]. Journal of Hohai University (Natural Sciences), 2011, 39(5): 540-544. (in Chinese))
    [37] 郦能惠, 朱 铁, 米占宽. 小浪底坝过渡料的强度与变形特性及缩尺效应[J]. 水电能源科学, 2001, 19(2): 39-42. (LI Neng-hui, ZHU Tie, MI Zhan-kuan. Strength and deformation properties of transition zone material of Xiaolangdi dam and scale effect[J]. Water Resources and Power, 2001, 19(2): 39-42. (in Chinese))
    [38] 傅 华, 韩华强, 凌 华. 堆石料级配缩尺方法对其室内试验结果的影响[J]. 岩土力学, 2012, 33(9): 2645-2649. (FU Hua, HAN Hua-qiang, LING Hua. Effect of grading scale method on results of laboratory tests on rockfill materials[J]. Rock and Soil Mechanics, 2012, 33(9): 2645-2649. (in Chinese))
    [39] 高莲士, 蔡昌光, 朱家启. 堆石料现场侧限压缩试验解耦K-G模型参数分析方法及在面板坝中的应用[J]. 水力发电学报, 2006, 25(6): 26-33. (GAO Lian-shi, CAI Chang-guang, ZHU Jia-qi. An analysis method for uncoupled K-G model parameters in site confined compression test of rockfill materials and its application on CFRD[J]. Journal of Hydroelectric Engineering, 2006, 25(6): 26-33.(in Chinese))
    [40] 邹德高, 徐 斌, 孔宪京, 等. 基于广义塑性模型的高面板堆石坝静、动力分析[J]. 水力发电学报, 2011, 30(6): 109-116. (ZOU De-gao, XU Bin, KONG Xian-jing, et al. Static and dynamic analysis of high concrete-face rockfill dam based on generalized plastic model[J]. Journal of Hydroelectric Engineering, 2011, 30(6): 109-116. (in Chinese))
    [41] XU B, ZOU D, LIU H. Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model[J]. Computers and Geotechnics, 2012, 43: 143-154.
    [42] ZOU D, XU B, KONG X, et al. Numerical simulation of the seismic response of the Zipingpu concrete face rockfill dam during the Wenchuan earthquake based on a generalized plasticity model[J]. Computers and Geotechnics, 2013, 49: 111-122.
    [43] LIU H, ZOU D, LIU J. Constitutive modeling of dense gravelly soils subjected to cyclic loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(14): 1503-1518.
    [44] KONG X, LIU J, ZOU D. Numerical simulation of the separation between concrete face slabs and cushion layer of Zipingpu dam during the Wenchuan earthquake[J]. Science China Technological Sciences, 2016, 59(4): 539-591.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-13
  • 发布日期:  2016-11-19

目录

    /

    返回文章
    返回