• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

深埋曲线钢顶管受力特性现场监测试验研究

张鹏, 王翔宇, 曾聪, 马保松

张鹏, 王翔宇, 曾聪, 马保松. 深埋曲线钢顶管受力特性现场监测试验研究[J]. 岩土工程学报, 2016, 38(10): 1842-1848. DOI: 10.11779/CJGE201610013
引用本文: 张鹏, 王翔宇, 曾聪, 马保松. 深埋曲线钢顶管受力特性现场监测试验研究[J]. 岩土工程学报, 2016, 38(10): 1842-1848. DOI: 10.11779/CJGE201610013
ZHANG Peng, WANG Xiang-yu, ZENG Cong, MA Bao-song. Site monitoring of mechanical characteristics of pipes during steel curved pipe jacking under large buried depth[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1842-1848. DOI: 10.11779/CJGE201610013
Citation: ZHANG Peng, WANG Xiang-yu, ZENG Cong, MA Bao-song. Site monitoring of mechanical characteristics of pipes during steel curved pipe jacking under large buried depth[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1842-1848. DOI: 10.11779/CJGE201610013

深埋曲线钢顶管受力特性现场监测试验研究  English Version

基金项目: 交通运输部项目(港珠澳大桥海连接线拱北隧道建设关键技术与应用研究-201331 J11300)
详细信息
    作者简介:

    张鹏(1988- ),博士研究生,主要从事非开挖和管道工程等领域的科研工作。E-mail: cugpengzhang@163.com。

    通讯作者:

    马保松,E-mail:mabaosong@163.com

Site monitoring of mechanical characteristics of pipes during steel curved pipe jacking under large buried depth

  • 摘要: 为了研究深埋曲线钢顶管施工过程中的力学特性,依托拱北隧道曲线顶管管幕工程,对曲线顶管管节轴向与环向应变进行了现场监测分析。实测数据结果表明,管节应变随顶进距离增大而略微增加,但基本保持在一定范围内。管节在顶进过程中应力曲线发生波动,停止顶进后逐渐趋于平稳。管节轴向应力主要受顶进力影响,而环向应力主要取决管节外侧环向荷载,曲线顶管管节弯曲内侧存在压应力集中。由于存在泊松效应,大埋深条件下管节顶部和底部轴向应力受环向变形控制。随着与机头距离增加,管节由轴向两侧受压逐渐转变为单侧受压,受压区位于管节弯曲内侧,应力集中更加显著。
    Abstract: In order to study the mechanical characteristics of pipes during steel curved pipe jacking under large buried depth, the axial strain and hoop strain of curved pipe jacking are monitored and analyzed through site tests, based on the curved pipe jacking roof of Gongbei tunnel. The results show that the strain of pipe slightly increases with the increase of jacking distance, and maintains a certain range. The stress curve of pipe fluctuates in the process of jacking, but gradually restores stability after jacking stoppage. The axial stress of pipe is mainly affected by the jacking force, and the hoop stress mainly depends on the ring load out of pipe. Pressure stress concentration is located inside the pipe jacking curve. Under large buried depth, the axial stresses of pipe top and bottom are controlled by the circumference deformation because of Poisson effect. With the increasing distance between the pipe and the jacking machine head, the mechanical characteristics of pipe change from axial compression at both sides to one-side compression. The compression occurs inside the pipe bending with more obvious stress concentration.
  • [1] RÖHNER R, HOCH A. Calculation of jacking force by new ATV A-161[J]. Tunnelling and Underground Space Technology, 2010(25): 731-735.
    [2] HASLEM R F. Stress formulation for joints in pipe-jacked tunnels[J]. Trenchless Technol, 1998, 12(1): 39-48.
    [3] CECS246—2008 给水排水工程顶管技术规程[S]. 2008. (CECS246—2008 Technical specification for pipe jacking of water supply and sewerage engineering[S]. 2008. (in Chinese))
    [4] 陈建中. 玻璃纤维增强塑料顶管接头受力分析[D]. 武汉:武汉理工大学, 2010. (CHEN Jian-zhong. Analysis the force of glass fiber reinforced plastics jacking pipe joints[D]. Wuhan: Wuhan University of Technology, 2010. (in Chinese))
    [5] 金文航. 长距离曲线顶管技术分析与研究[D]. 杭州: 浙江大学, 2005. (JIN Wen-hang. Analysis of long-distance curve pipe jacking texhnology[D]. Hangzhou: Zhejiang University, 2005. (in Chinese))
    [6] 熊 翦. 矩形顶管关键受力分析[D]. 北京: 中国地质大学2013. (XIONG Jian. Analysis of critical mechanics od rectangular pipe jacking[D]. Beijing: China University of Geosciences, 2013. (in Chinese))
    [7] 赵志峰, 邵光辉. 顶管施工中钢管管壁稳定性分析及壁厚的优化[J]. 武汉大学学报 (工学版), 2011, 44(4): 481-486. (ZHAO Zhi-feng, SHAO Guang-hui. Stability analysis of wall stability of steel pipe in pipe-jacking and optimization of proper wall thickness[J]. Engineering Journal of Wuhan University, 2011, 44(4): 481-486. (in Chinese))
    [8] ZHOU Jian-qing. Numerical analysis and laboratory test of concrete jacking pipes[D]. Oxford: University of Oxford, 1998.
    [9] 薛振兴. 顶管施工顶力计算与力学特性研究[D]. 北京: 中国石油大学, 2010. (XUE Zhan-xing. Investigation on jacking force calculation and mechanical properties of pipe jacking construction[D]. Beijing: China University of Petroleum, 2010. (in Chinese))
    [10] 陈 楠. 复杂环境中大直径钢顶管的受力特性研究[D]. 上海: 上海交通大学, 2012. (CHEN nan. Mechanical characteristics of steel pipe-jacking with large diameter in complex environment[D]. Shanghai: Shanghai Jiao Tong University, 2012. (in Chinese))
    [11] MILLIGAN G W E, NORRIS P. Site based research in pipe jacking-objectives, procedures and a case history[J]. Tunnelling and Underground Space Technology, 1996, 11(1): 3-24.
    [12] MILLIGAN G W E, NORRIS P. Pipe-soil interaction during pipe jacking[J]. Geotechnical Engineering, 1999, 137(1): 27-44.
    [13] 冯海宁, 温晓贵, 魏 纲, 等. 顶管施工对土体影响的现场试验研究[J]. 岩土力学, 2003, 24(5): 781-785. (FENG Hai-ning, WEN Xiao-gui, WEI Gang et al. In-situ test research on influence of pipe jacking on soil[J]. Rock and Soil Mechanics, 2003, 24(5): 781-785. (in Chinese))
    [14] 魏 纲, 徐日庆, 余剑英, 等. 顶管施工中管道受力性能的现场试验研究[J]. 岩土力学, 2005, 26(8): 1273-1277. (WEI Gang, XU Ri-qing, YU Jian-ying, et al. Site-based experimental study on pipe behavior during pipe jacking[J]. Rock and Soil Mechanics, 2005, 26(8): 1273-1277. (in Chinese))
    [15] 潘同燕. 大口径急曲线顶管施工力学分析与监测技术研究[D]. 上海: 同济大学, 2000. (PAN Tong-yan. Research of mechanics analysis and monitoring technology during large diameter sharp curved pipe jacking construction[D]. Shanghai: Tongji University, 2000. (in Chinese))
    [16] 杨 仙. 管幕预筑法中密排大直径钢管群顶进研究[D]. 长沙: 中南大学, 2012. (YANG Xian. Research of large diameter jacking-pipes with small space in pipe-roof pre-construction method[D]. Changsha: Central South University, 2012. (in Chinese))
    [17] 余 晶, 程 勇, 贾瑞华. 港珠澳大桥珠海连接线拱北隧道方案论证[J]. 现代隧道技术, 2012, 49(1): 119-125. (YU Jing, CHENG Yong, JIA Rui-hua. Option demonstration for the gongbei tunnel at the Zhuhai Link of the Hong Kong-Zhuhai-Macau Bridge[J]. Rock and Soil Mechanics, 2012, 49(1): 119-125. (in Chinese))
    [18] 胡向东, 任 辉, 陈 锦, 等. 管幕冻结法积极冻结方案模型试验研究[J]. 现代隧道技术, 2014, 51(5): 92-98. (HU Xiang-dong, REN Hui, CHEN Jin, et al. Model test study of the active freezing scheme for the combined pipe-roof and freezing method[J]. Modern Tunnelling Technology, 2014, 51(5): 92-98. (in Chinese))
    [19] 李志宏, 李 剑. 曲线顶管管幕间相互影响研究[J]. 现代隧道技术, 2015, 52(3): 63-68. (LI Zhi-hong, LI Jian. A study of the interaction between the pipes of a curved pipe-roof[J]. Modern Tunnelling Technology, 2015, 52(3): 63-68. (in Chinese))
  • 期刊类型引用(24)

    1. 李东明,聂一丹,晁阳,齐慧君,林潮宁. 基于改进聚类方法的大坝安全监测算法. 水力发电. 2025(04): 97-103+110 . 百度学术
    2. 李扬涛,包腾飞,李田雨. 深水大坝缺陷鲁棒实时检测方法. 武汉大学学报(信息科学版). 2025(04): 684-698 . 百度学术
    3. 穆明垚,王岳航,冯国磊. 水库除险加固方案设计与技术优化及坝体稳定性分析. 粘接. 2025(04): 163-165+169 . 百度学术
    4. 邓鹏. 物联网技术在小水库大坝安全监测中的应用现状. 中国宽带. 2025(04): 95-97 . 百度学术
    5. 董蕊. 基于BIM技术在土石坝渗流安全监控与预警. 地下水. 2025(02): 260-262 . 百度学术
    6. 高寒. 机电设备中智能故障检测诊断技术的运用. 黑龙江科学. 2024(02): 64-66 . 百度学术
    7. 徐新超,张若冰. 降水极端情况下某闸坝的自适应防洪安全运行管理研究. 珠江水运. 2024(02): 119-121 . 百度学术
    8. 海日姑·阿布都热西提. 小型水库雨水情测报和大坝安全监测系统设计与实践. 中国水运(下半月). 2024(03): 88-90 . 百度学术
    9. 尹光景,李晨玉,曾子彬,赵芃芃,雷鹏,常留红. 基于Vue.js+Django的大坝安全监测信息管理系统开发. 软件. 2024(01): 47-49+82 . 百度学术
    10. 王猛,刘英英,周明明. 浅析大坝失事主要原因及应对措施方案. 水利规划与设计. 2024(05): 81-83+105 . 百度学术
    11. 刘郴玲,蒋光灿. 基于龟石水库监测资料的大坝安全性态评估分析. 人民珠江. 2024(S1): 29-33 . 百度学术
    12. 李东明,李龙龙,晁阳,李同春,齐慧君,林潮宁. 大坝安全监测数字孪生系统应用研究. 水力发电. 2024(09): 110-117 . 百度学术
    13. 沈晓雷,余泉,季昊巍. 基于传感器的海上风电钢结构腐蚀检测方法. 中国水运. 2024(06): 91-92 . 百度学术
    14. 盛金保,李宏恩,王芳. 智能大坝建设与韧性提升发展路径研究. 中国水利. 2024(24): 68-77 . 百度学术
    15. 王琛,陈锦,谢应兵. 浅析现代水利工程成本控制理论及其存在问题. 红水河. 2023(01): 7-10 . 百度学术
    16. 李松培,周江,黎海波,熊静,杨志虎,刘家森. 大坝安全在线监控及智能管理平台探索与应用. 云南水力发电. 2023(06): 173-176 . 百度学术
    17. 窦飞,薛江寒. 岱山大坝渗流预测模型研究及渗漏问题分析. 海河水利. 2023(06): 61-68+112 . 百度学术
    18. 李宗坤,王特,葛巍,景来红,罗秋实,杨风威,宋志宇,马福恒. 黄河流域梯级水库大坝风险评估与管控的战略思考. 人民黄河. 2023(07): 1-6 . 百度学术
    19. 刘越,周志维. 基于小概率法的大坝多源监测预警阈值研究. 江西水利科技. 2023(04): 252-256 . 百度学术
    20. 热米拉·塔什珀拉提. 溢洪道水流特性的性能模拟研究. 水利科技与经济. 2023(07): 122-127 . 百度学术
    21. 何永祥. 甘肃永昌皇城水库大坝安全评价分析. 水利科学与寒区工程. 2023(09): 142-144 . 百度学术
    22. 李宇文. 小型病险水库安全鉴定及加固改造实践——以水磨坑水库为例. 湖南水利水电. 2023(05): 75-78 . 百度学术
    23. 李宗坤,王特,葛巍,景来红,崔秋晶,焦余铁. 考虑溃坝后果的水库工程等级划分方法. 水科学进展. 2023(05): 753-765 . 百度学术
    24. 唐忠海,陈章傑,刘书婷,廖渝,李欣艺,李滟浩,袁士才. 无人机航测技术在大坝裂缝检测中的应用研究. 科技创新与生产力. 2022(10): 63-65 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 33
出版历程
  • 收稿日期:  2015-09-01
  • 发布日期:  2016-10-24

目录

    /

    返回文章
    返回