• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

非饱和土水气迁移与相变:两类“锅盖效应”的发生机理及数值再现

滕继东, 贺佐跃, 张升, 盛岱超

滕继东, 贺佐跃, 张升, 盛岱超. 非饱和土水气迁移与相变:两类“锅盖效应”的发生机理及数值再现[J]. 岩土工程学报, 2016, 38(10): 1813-1821. DOI: 10.11779/CJGE201610010
引用本文: 滕继东, 贺佐跃, 张升, 盛岱超. 非饱和土水气迁移与相变:两类“锅盖效应”的发生机理及数值再现[J]. 岩土工程学报, 2016, 38(10): 1813-1821. DOI: 10.11779/CJGE201610010
TENG Ji-dong, HE Zuo-yue, ZHANG Sheng, SHENG Dai-chao. Moisture transfer and phase change in unsaturated soils: physical mechanism and numerical model for two types of “canopy effect”[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1813-1821. DOI: 10.11779/CJGE201610010
Citation: TENG Ji-dong, HE Zuo-yue, ZHANG Sheng, SHENG Dai-chao. Moisture transfer and phase change in unsaturated soils: physical mechanism and numerical model for two types of “canopy effect”[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1813-1821. DOI: 10.11779/CJGE201610010

非饱和土水气迁移与相变:两类“锅盖效应”的发生机理及数值再现  English Version

基金项目: 国家重点基础研究发展计划(“973”计划)项目(2014CB047001); 国家自然科学基金项目(51508578)
详细信息
    作者简介:

    滕继东(1987- ),男,讲师,硕士生导师,主要从事非饱和土力学等方面的教学和科研工作。E-mail: jdteng@csu.edu.cn。

    通讯作者:

    张升,E-mail:zhang-sheng@csu.edu.cn

Moisture transfer and phase change in unsaturated soils: physical mechanism and numerical model for two types of “canopy effect”

  • 摘要: 结合非饱和土水气迁移的物理过程和内在机理,将“锅盖效应”分为两种情形。第一类“锅盖效应”定义为非饱和土水气的冷凝过程,而第二类“锅盖效应”定义为水气迁移成冰过程。相较于前者,第二类“锅盖效应”会造成覆盖层下土体含水率大幅度提高,且现有非饱和土水热气迁移理论无法给出合理解释。综合考虑水分的蒸发、冷凝和冻结3个相变过程,建立了非饱和冻土水热气耦合迁移的数学模型,并通过数值模拟求解,再现了第二类“锅盖效应”的形成过程。另外计算结果表明:温度梯度下的气态水迁移并成冰会造成覆盖层下土体接近饱和含水率;一定表层深度范围内,土体含水率增加存在两个陡升段。由于现行工程设计很少考虑防气隔气,在寒旱地区进行工程建设需对第二类“锅盖效应”引起足够重视。
    Abstract: Considering the physical process and mechanism of liquid water-vapor transfer in unsaturated soils, this study divides the “canopy effect” into two types. The first is the process of coupling movement of liquid water-vapor and vapor condensation, whereas the second is the vapor transfer facilitated by changing the phase into ice. Differing from the first type of “canopy effect”, the second one can lead to a large amount of water accumulated beneath the impermeable top cover, while the available theory cannot give reasonable predication. This paper attempts to reveal its mechanism by proposing a new theory for liquid water-vapor-heat coupling movement in unsaturated freezing soils, in which the phase changes of evaporation, condensation and de-sublimation of vapor flow are taken into account. On basis of numerical simulation, the proposed model can hence reproduce the unusual moisture accumulation observed in relatively dry soils. The results show that the vapor transfer-induced freezing can produce a water content close to full saturation for soil under the cover, and two remarkable rises can be observed for the water content of soil at certain depth. Since isolating vapor/air is rarely considered in the current engineering design in China, the second type of “canopy effect” needs more attention when performing engineering construction in cold and arid regions.
  • [1] 李 强, 姚仰平, 韩黎明, 等. 土体的“锅盖效应”[J]. 工业建筑, 2014, 44(2): 69-71. (LI Qiang, YAO Yao-ping, HAN Li-ming, et al. Pot-cover effect of soil[J]. Industrial Construction, 2014, 44(2): 69-71. (in Chinese))
    [2] 杨三强, 刘 涛, 马淑红, 等. 干旱荒漠区路面覆盖效应评价指标与评价模型研究[J]. 干旱区资源与环境, 2013, 27(5): 76-82. (YANG San-qiang, LIU Tao, MA Shu-hong, et al. The evaluation index and evaluation model of pavement coverage for arid desertarea[J]. Journal of Arid Land Resources and Environment, 2013, 27(5): 76-82. (in Chinese))
    [3] SHENG D, ZHANG S, YU Z, et al. Assessing frost susceptibility of soils using PCHeave[J]. Cold Region Science Technology, 2013, 95: 27-38.
    [4] SHENG D, ZHANG S, NIU F, et al. A potential new frost heave mechanism in high-speed railway embankments[J]. Géotechnique, 2014, 64(2): 144-154.
    [5] ZHANG S, SHENG D, ZHAO G, et al. Analysis of frost heave mechanisms in a high-speed railway embankment[J]. Canadian Geotechnical Journal, 2016, 53: 1-10.
    [6] PHILIP J R, DE VRIES D A. Moisture movement in porous materials under temperature gradient[J]. Trans Am Geophys Union, 1957, 38: 222-232.
    [7] MILLY P C D. A simulation analysis of thermal effects on evaporation[J]. Water Resources Research, 1984, 20: 1087-1098.
    [8] NASSAR I N, HORTON R. Water transport in unsaturated nonisothermal salty soil: II. Theoretical development[J]. Soil Science Society of America Journal, 1989, 53: 1330-1337.
    [9] SAKAI M, TORIDE N, ŠIMUNEK J. Water and vapor movement with condensation and evaporation in a sandy column[J]. Soil Science Society of America Journal, 2009, 73(3): 707-717.
    [10] VAN GENUCHTEN M TH. A closed-form equation for predicting hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44: 892-898.
    [11] MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12: 513-522.
    [12] SAITO H, ŠIMUNEK J, MOHANTY B P. Numerical analysis of coupled water, vapor, and heat transport in the vadosezone[J]. Vadose Zone Journal, 2006, 5: 784-800.
    [13] DE VRIES D A. Simultaneous transfer of heat and moisture in porous media[J]. Trans Am Geophys Union, 1958, 39: 909-916.
    [14] CHUNG S O, HORTON R. Soil heat and water flow with a partial surface mulch[J]. Water Resources Research, 1987, 23: 2175-2186.
    [15] 赵天宇, 王锦芳. 考虑密度与干湿循环影响的黄土土水特征曲线[J]. 中南大学学报(自然科学版), 2012, 43(6): 2445-2453. (ZHAO Tian-yu, WANG Jin-fang. Soil-water characteristic curve for unsaturated loess soil considering density and wetting-drying cycle effects[J]. Journal of Central South University (Science and Technology), 2012, 43(6): 2445-2453. (in Chinese))
    [16] 李保雄, 牛永红, 苗天德. 兰州马兰黄土的物理力学特性[J]. 岩土力学, 2007, 28(6): 1077-1082. (LI Bao-xiong, NIU Yong-hong, MIAO Tian-de. Physico-mechanical characteristics of Malan loess in Lanzhou region[J]. Rock and Soil Mechanics, 2007, 28(6): 1077-1082. (in Chinese))
    [17] 马 巍, 王大雁. 中国冻土力学研究50 a 回顾与展望[J]. 岩土工程学报, 2012, 34(4): 625-639. (MA Wei, WANG Da-yan. Studies on frozen soil mechanics in China in past 50 years and their prospect[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 625-639. (in Chinese))
    [18] TAYLOR G S, LUTHIN J N. A model for coupled heat and moisture transfer during soil freezing[J]. Canadian Geotechnical Journal, 1978, 15(4): 548-555.
    [19] HANSSON K, ŠIMUNEK J, MIZOGUCHI M, et al. Water flow and heat transport in frozen soil: numerical solution and freeze-thaw applications[J]. Vadose Zone Journal, 2004, 3, 693-704.
    [20] WARK K J. Generalized thermodynamic relationships. thermodynamics[M]. 5th ed. New York: McGraw-Hill, Inc, 1988.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-22
  • 发布日期:  2016-10-24

目录

    /

    返回文章
    返回