• Scopus数据库收录期刊
  • 中国科技核心期刊
  • 全国中文核心期刊
  • 美国工程索引(EI)收录期刊

边坡稳定性分析的物质点强度折减法

史卜涛, 张云, 张巍

史卜涛, 张云, 张巍. 边坡稳定性分析的物质点强度折减法[J]. 岩土工程学报, 2016, 38(9): 1678-1684. DOI: 10.11779/CJGE201609015
引用本文: 史卜涛, 张云, 张巍. 边坡稳定性分析的物质点强度折减法[J]. 岩土工程学报, 2016, 38(9): 1678-1684. DOI: 10.11779/CJGE201609015
SHI Bu-tao, ZHANG Yun, ZHANG Wei. Strength reduction material point method for slope stability[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1678-1684. DOI: 10.11779/CJGE201609015
Citation: SHI Bu-tao, ZHANG Yun, ZHANG Wei. Strength reduction material point method for slope stability[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1678-1684. DOI: 10.11779/CJGE201609015

边坡稳定性分析的物质点强度折减法  English Version

详细信息
    作者简介:

    史卜涛(1986- ),男,博士研究生,主要从事工程地质数值分析方面的研究。E-mail: 540535085@qq.com。

  • 中图分类号: TU43

Strength reduction material point method for slope stability

  • 摘要: 采用更新拉格朗日控制方程的物质点法模拟边坡失效过程。基于广义插值物质点法以及弹塑性土体模型,提出了物质点强度折减法,并用于边坡稳定性分析,具体步骤为:划分背景网格,确定物质点;分步加载重力以消除物质点的应力振荡,确定边坡初始应力场;折减强度参数,计算边坡塑性区分布及土体变形,确定安全系数。算例表明,物质点强度折减法与有限元强度折减法计算结果相近。同时,物质点强度折减法可采用坡顶点竖直方向的位移是否突变作为边坡失稳判据。此外,利用物质点强度折减法还发现,在某一折减系数下,即使塑性区贯通,边坡仍然具有一定的稳定性,不会立即发生位移突变,为边坡稳定性分析提供了新的思路。
    Abstract: The material point method, employing updated Lagrangian formulation, can be used to simulate the failure process of slopes. The strength reduction material point method is proposed to analyze slope stability, based on the generalized interpolation material point method and the elastoplastic constitutive model. The detailed procedure is as follows. Firstly, the grid is divided and all the material points are identified. Then, an incremental gravitation model is employed to eliminate the stress oscillation and to determine the initial stress field of slope. Finally, the parameters of the soil strength are reduced, and the safety factor is determined according to the distribution of the plastic zone as well as the deformation of the soil. The illustration shows the results of the strength reduction material point method are almost identical with those of strength reduction finite element method. Meanwhile, the slope failure criterion of the strength reduction material point method may use the fact whether a sudden displacement change occurs along the vertical direction of the slope crest. Also, using strength reduction material point method, it is discovered that even the plastic zone breaks through under a certain reduction coefficient, the slope still remains stable, and no sudden displacement change will occur immediately. The proposed method offers a new idea for the analysis of slope stability.
  • [1] 宋二祥. 土工结构安全系数的有限元计算[J]. 岩土工程学报, 1997, 19(2): 1-7. (SONG Er-xiang. Finite element analysis of safety factor for soil structures[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(2): 1-7. (in Chinese))
    [2] 郑颖人, 赵尚毅. 有限元强度折减法在土坡与岩坡中的应用[J]. 岩石力学与工程学报, 2004, 23(19): 3381-3388. (ZHENG Ying-ren, ZHAO Shang-yi. Application of strength reduction FEM to soil and rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19): 3381-3388. (in Chinese))
    [3] 赵尚毅, 郑颖人, 张玉芳. 极限分析有限元法讲座——II 限元强度折减法中边坡失稳的判据探讨[J]. 岩土力学, 2005, 26(2): 332-336. (ZHAO Shang-yi, ZHENG Ying-ren, ZHANG Yu-fang. Study on slope failure criterion in strength reduction finite element method[J]. Rock and Soil Mechanics, 2005,26(2): 332-336. (in Chinese))
    [4] 赵尚毅, 郑颖人, 时卫民, 等. 用有限元强度折减法求边坡稳定安全系数[J]. 岩土工程学报, 2002, 24(3): 343-346. (ZHAO Shang-yi, ZHENG Ying-ren, SHI Wei-min, et al. Analysis of safety factor of slope by strength reduction FEM[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(3): 343-346. (in Chinese))
    [5] 郑 宏, 李春光, 李悼芬, 等. 求解安全系数的有限元法[J]. 岩土工程学报, 2002, 24(5): 626-628. (ZHENG Hong, LI Chun-guang, LEE C F, et al. Finite element method for solving the factor of safety[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(5): 626-628. (in Chinese))
    [6] 栾茂田, 武亚军, 年延凯. 强度折减有限元法中边坡失稳的塑性区判据及其应用[J]. 防灾减灾工程学报, 2003, 23(3): 1-8. (LUAN Mao-tian, WU Ya-jun, NIAN Ting-kai. A criterion for evaluating slope stability based on development of plastic zone by shear strength reduction FEM[J]. Journal of Disaster Prevention and Mitigation Engineering, 2003, 23(3): 1-8. (in Chinese))
    [7] 刘金龙, 栾茂田, 赵少飞, 等. 关于强度折减有限元方法中边坡失稳判据的讨论[J]. 岩土力学, 2005, 26(8): 1345-1348. (LIU Jin-long, LUAN Mao-tian, ZHAO Shao-fei, et al. Discussion on criteria for evaluation stability of slope in elastoplastic FEM based on shear strength reduction technique[J]. Rock and Soil Mechanics, 2005, 26(8): 1345-1348. (in Chinese))
    [8] COURANT R, FRIEDRICHS K, LEWY H. On the partial difference equations of mathematical physics[J]. IBM Journal of Research and Development, 1967, 11(2): 215-234.
    [9] LAX P D, RICHTMYER R D. Survey of the stability of linear finite difference equations[J]. Communications on Pure and Applied Mathematics, 1956, 9(2): 267-293.
    [10] ANDERSEN S, ANDERSEN L. Modelling of landslides with the material-point method[J]. Computational Geosciences, 2010, 14(1): 137-147.
    [11] ABE K, SOGA K, BANDARA S. Material point method for coupled hydromechanical problems[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2014, 140(3): 682-700.
    [12] BANDARA S, SOGA K. Coupling of soil deformation and pore fluid flow using material point method[J]. Computers & Geotechnics, 2015, 63: 199-214.
    [13] 黄 鹏. 金属及岩土冲击动力学问题的物质点法研究[D]. 北京: 清华大学, 2010. (HUANG Peng. Material point method for mental and soil impact dynamics problem[D]. Beijing: Tsinghua University, 2010. (in Chinese))
    [14] BEUTH L, BENZ T, VERMEER P A. Large deformation analysis using a quasi-static material point method[J]. Journal of Theoretical and Applied Mechanics, 2008, 38(1): 45-60.
    [15] BEUTH L, WIĘCKOWSKI Z, VERMEER P A. Solution of quasi-static large-strain problems by the material point method[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2011, 35(13): 1451-1465.
    [16] 孙玉进, 宋二祥. 大位移滑坡形态的物质点法模拟[J]. 岩土工程学报, 2015, 37(7): 1218-1225. (SUN Yu-jin, SONG Er-xiang. Simulation of large-displacement landslide by material point method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1218-1225. (in Chinese))
    [17] SULSKY D, CHEN Z, SCHREYER H L. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics & Engineering, 1994, 118(1): 179-196.
    [18] SULSKY D, ZHOU S J, SCHREYER H L. Application of a particle-in-cell method to solid mechanics[J]. Computer Physics Communications, 1995, 87(1): 236-252.
    [19] BARDENHAGEN S G, KOBER E M. The generalized interpolation material point method[J]. Computer Modeling in Engineering and Sciences, 2004, 5(6): 477-496.
    [20] BARDENHAGEN S G. Energy conservation error in the material point method for solid mechanics[J]. Journal of Computational Physics, 2002, 180(1): 383-403.
    [21] 张 雄, 廉艳平, 刘 岩, 等. 物质点法[M].北京:清华大学出版社, 2013. (ZHANG Xiong, LIAN Yan-ping, LIU Yan, et al. Material point method[M]. Beijng: Tsinghua University Press, 2013. (in Chinese))
    [22] ZIENKIEWICZ O C, HUMPHESON C, LEWIS R W. Associated and non-associated visco-plasticity and plasticity in soil mechanics[J]. Géotechnique, 1975, 25(4): 671-689.
    [23] 费 康, 张建伟. ABAQUS在岩土工程中的应用[M]. 北京: 中国水利水电出版社, 2010. (FEI Kang, ZHANG Jian-wei. Applications of ABAQUS in soil engineering[M]. Beijing: Water Publication of China, 2010. (in Chinese))
  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  748
  • HTML全文浏览量:  3
  • PDF下载量:  347
  • 被引次数: 1
出版历程
  • 收稿日期:  2015-08-10
  • 发布日期:  2016-09-24

目录

    /

    返回文章
    返回