• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

既有桩基对盾构施工参数的影响研究

张海彦, 何平, 闫国新, 王剑晨, 刘喆

张海彦, 何平, 闫国新, 王剑晨, 刘喆. 既有桩基对盾构施工参数的影响研究[J]. 岩土工程学报, 2016, 38(9): 1615-1624. DOI: 10.11779/CJGE201609008
引用本文: 张海彦, 何平, 闫国新, 王剑晨, 刘喆. 既有桩基对盾构施工参数的影响研究[J]. 岩土工程学报, 2016, 38(9): 1615-1624. DOI: 10.11779/CJGE201609008
ZHANG Hai-yan, HE Ping, YAN Guo-xin, WANG Jian-cheng, LIU Zhe. Effects of existing pile foundation on parameters of shield tunneling[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1615-1624. DOI: 10.11779/CJGE201609008
Citation: ZHANG Hai-yan, HE Ping, YAN Guo-xin, WANG Jian-cheng, LIU Zhe. Effects of existing pile foundation on parameters of shield tunneling[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1615-1624. DOI: 10.11779/CJGE201609008

既有桩基对盾构施工参数的影响研究  English Version

详细信息
    作者简介:

    张海彦(1982- ),男,陕西榆林人,博士。E-mail: haixinghero@163.com。

    通讯作者:

    何平,E-mail:phe@bjtu.edu.cn

  • 中图分类号: TU473

Effects of existing pile foundation on parameters of shield tunneling

  • 摘要: 盾构隧道施工邻近桥梁桩基已成为目前研究的热点问题。针对盾构施工参数取值在工程中的应用价值,利用三维弹塑性有限元分析了桩基引起地层的竖向附加应力,反推出了Geedes式中的桩端阻力、桩侧阻力分担桩顶荷载的比例系数与桩长的数学表达式,并将Geedes竖向附加应力影响范围与Randolph提出的影响半径对比分析后,给出了桩基影响区域和非影响区域的界定半径;基于支护压力、注浆压力的理论取值范围及单位长度上土体损失量等于沉降槽面积的条件,利用三维弹塑性有限元进行计算分析,给出了支护压力、注浆压力在桩基非影响区域内的建议取值和土体损失的计算表达式;基于桩基非影响区域内盾构施工参数的建议取值及桩基对地层产生的附加应力,给出了桩基影响区域内盾构施工参数建议取值的数学表达式。研究结果表明:工作面的土压力阻力选取工作面静止土压力合力,注浆压力选取1.1倍的隧道埋深处水土压力时,对地层的扰动较小。
    Abstract: The shield tunneling adjacent to bridge pile foundation has become a hot issue at present. In view of the application value of parameters of shield tunneling in projects, the vertical additional stress of the pile foundation is analyzed by using a three-dimensional elastic-plastic finite element method. The mathematical expressions for pile length and proportional coefficient are derived. The radii of impact area and non-impact area of piles are defined by comparing the influence area of additional stress generated by piles with the influence radius put forward by Randolph. The optimal values of tunnel face pressure and grouting pressure in the non-impact area of piles are obtained through three-dimensional elastic-plastic finite element analysis based on the theoretical values of tunnel face pressure and grouting pressure. The expression for calculating the ground loss is introduced under the condition that the soil loss per unit length equals the area of settlement trough. By combining the optimal values of the parameters of shield tunneling in the non-impact area and the additional stress generated by piles, the mathematical expressions for the parameters of shield tunneling in the impact area are achieved. The results show that when the soil pressure resistance of tunnel face equals the static soil pressure of tunnel face and the grouting pressure equals 1.1 times the soil and water pressure on the top surface of tunnel, the disturbance of the soil strata is relatively slight.
  • [1] 周正宇. 地铁施工邻近既有桥梁影响分析及主动防护技术研究[D]. 北京: 北京交通大学, 2012. (ZHOU Zheng-yu. Research on effect and the active protection of neighboring exiting bridge with subway construction[D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese))
    [2] LOGANATHAN N, POULOS H G. Centrifuge model testing of tunneling-induced ground and pile deformation[J]. Géotechnique, 2002, 50(3): 283-294.
    [3] LEE Y J, BASSETT R H. Influencnes for 2D pile soil-tunneling interaction based on model test and numerical analysis[J]. Tunneling and Underground Space Technology, 2007, 22: 325-342.
    [4] LEUNG C F, LIM J K, SHEN R F, et a1. Behavior of pile groups subject to excavation induced soil movement[J]. Journal of Geotechnical and Geo-environmental Engineering, 2003, 129(1): 58-65.
    [5] GEDDES J D. Stress in foundations soils due to vertical subsurface load[J]. Géotechnique, 1966, 16: 231-255.
    [6] 何 平, 苏 斌, 苏 艺. 地铁穿越桥梁结构影响与关键控制技术[M]. 北京: 北京交通大学出版社, 2014. (HE Ping, SU Bin, SU Yi. The effects on bridge structure and key control technology of subway crossing[M]. Beijing: Beijing Jiaotong University Press, 2014. (in Chinese))
    [7] RANDALPH M F, WORTH C P. Analysis of deformation of vertically loaded piles[J]. Journal of the Geotechnical Engineering Division, American Society of Civil Engineering, 1978, 104(GT12): 1465-1488.
    [8] MARCUS M, TRIUT P E. Soil mechanics technology[M]. New Jersey: Prentice-Hall, Inc., 1978.
    [9] 魏新江, 魏 纲, 丁 智. 城市隧道工程施工技术[M]. 北京: 化学工业出版社, 2011. (WEI Xin-jiang, WEI Gang, DING Zhi. City tunneling engineering construction technique[M]. Beijing: Chemical Industry Press, 2011. (in Chinese))
    [10] 袁大军, 伊 凡, 王华伟, 等. 超大直径泥水盾构掘进对土体的扰动研究[J]. 岩石力学与工程学报, 2009, 28(10): 2074-2079. (YUAN Da-jun, YI Fan, WANG Hua-wei, et al. Study of soil disturbance caused by super-large diameter slurry shield tunneling[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2074-2079. (in Chinese))
    [11] MINDLIN R D. Force on a point in the interior of a semi-infinite solid[J]. Physics, 1936, 7(5): 195-201.
    [12] LEE K M, ROWE R K, LO K Y. Subsidence owing to tunneling i: estimating the gap parameter[J]. Canadian Geotechnical Journal, 1992, 29(6): 929-940.
    [13] 杨冠天, 项彦勇. 基于间隙参数模型的盾构隧道周围土体位移分析[J]. 岩土力学, 2005, 26(10): 1602-1606. (YANG Guan-tian, XIANG Yan-yong. Analysis of ground movements due to shield tunneling by using a gap-parameter model[J]. Rock and Soil Mechanics, 2005, 26(10): 1602-1606. (in Chinese))
    [14] 张海波, 殷宗泽, 朱俊高. 地铁隧道盾构法施工过程中地层变位的三维有限元模拟[J]. 岩石力学与工程学报, 2005, 24(5): 755-760. (ZHANG Hai-bo, YIN Zong-ze, ZHU Jun-gao. 3D finite element simulation on deformation of soil mass during shield tunneling[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(5): 755-760. (in Chinese))
    [15] PECK R B. Deep excavations and tunneling in soft ground[C]// Proceeding of 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City, 1969: 255-290.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-18
  • 发布日期:  2016-09-24

目录

    /

    返回文章
    返回