• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

饱和土中考虑衬砌界面排水的浅埋盾构隧道开挖影响分析

张治国, 赵其华, 白乔木, 王卫东

张治国, 赵其华, 白乔木, 王卫东. 饱和土中考虑衬砌界面排水的浅埋盾构隧道开挖影响分析[J]. 岩土工程学报, 2016, 38(9): 1595-1605. DOI: 10.11779/CJGE201609006
引用本文: 张治国, 赵其华, 白乔木, 王卫东. 饱和土中考虑衬砌界面排水的浅埋盾构隧道开挖影响分析[J]. 岩土工程学报, 2016, 38(9): 1595-1605. DOI: 10.11779/CJGE201609006
ZHANG Zhi-guo, ZHAO Qi-hua, BAI Qiao-mu, WANG Wei-dong. Excavation influences induced by shallow shield tunnel in saturated soil considering drainage at ground-liner interface[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1595-1605. DOI: 10.11779/CJGE201609006
Citation: ZHANG Zhi-guo, ZHAO Qi-hua, BAI Qiao-mu, WANG Wei-dong. Excavation influences induced by shallow shield tunnel in saturated soil considering drainage at ground-liner interface[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1595-1605. DOI: 10.11779/CJGE201609006

饱和土中考虑衬砌界面排水的浅埋盾构隧道开挖影响分析  English Version

基金项目: 国家自然科学基金项目(51008188); 上海自然科学基金项目(15ZR1429400); 地质灾害防治与地质环境保护国家重点实验室课题(SKLGP2015K015); 国土资源部丘陵山地地质灾害防治重点实验室课题(2015k005)
详细信息
    作者简介:

    张治国(1978- ),男,河北秦皇岛人,男,博士,博士后,副教授,硕士生导师,主要从事地下工程施工对周边环境影响控制方面的研究工作。E-mail: zgzhang@usst.edu.cn。

  • 中图分类号: TU44

Excavation influences induced by shallow shield tunnel in saturated soil considering drainage at ground-liner interface

  • 摘要: 盾构隧道施工引起的环境土工效应分析一直是隧道及地下建筑工程领域中研究的热点问题。由于目前该领域较少考虑饱和土质以及隧道衬砌与土体间界面排水工况所带来的影响,尤其是较少针对隧道施工长期变形影响以及衬砌应力进行解析分析。由此基于隧道开挖椭圆化变形模式,考虑衬砌界面完全排水以及完全不排水两种工况,提出了饱和土中浅埋隧道开挖引起的地层长短期变形和隧道衬砌应力计算方法。结果表明:椭圆化变形模式对地层短期变形和长期变形的影响均较明显,在此条件下得到的位移曲线与实测值吻合较好。在计算衬砌内力时,衬砌轴力和弯矩整体关于90°/270°轴即隧道竖轴线严格对称,其中轴力沿圆周呈上大圆下小圆的倒“8”字形分布;而弯矩沿圆周呈上下圆基本一致的“8”字形分布,其中下圆稍大。土质和界面排水条件显著影响衬砌内力值的大小,其中饱和土长期排水工况下衬砌内力值一般大于不排水工况解,且其与饱和土短期不排水解相比差距明显。分析成果可为正确预估饱和土浅埋盾构开挖变形提供一定的理论依据。
    Abstract: The excavation impact analysis of geo-environmental effects caused by shield tunnel in saturated soil has been a hot issue in the researches of tunnel and underground structure engineering. However, the current researches give little investigations on the impacts of saturated soil as well as the interface drainage process between tunnel liner and surrounding soils. Particularly the long-term deformation influences and the liner stress are not investigated. Considering the two conditions of no drainage or full drainage at the ground-liner interface, a method for soil displacements and liner stresses affected by tunneling is proposed based on the oval deformation mode. It is observed that the oval deformation mode yields significant impacts on both the short-term and long-term ground displacements. The soil deformation curves are in good agreement with the measured values. It can be concluded that when calculating the stress of liner, the axial force and bending moment of liner are strictly symmetrical to axis 90º/270 º or tunnel vertical axes. The type of axial force is somewhat “8”- shaped circumference, with the above circle obviously larger than the below one. The type of bending movement is also “8”-shaped, with the below circle a little larger than the above one. The soil and interface drainage conditions significantly affect the value of internal force of liner. The internal force of liner under long-term and full drainage conditions in saturated soil, which is larger than that under the long-term condition without drainage, is quite different compared to that under the short-term condition without interface drainage. The analysis results may provide a theoretical basis for correct prediction of the shallow shield excavation deformation in saturated soils.
  • [1] PECK R B. Deep excavations and tunneling in soft ground[C]// Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City, 1969: 225-290.
    [2] 齐 涛, 张庆贺, 胡向东, 等. 一种盾构掘进引起地表沉降的实用预测方法[J]. 岩土力学, 2010, 31(4): 1247-1252. (QI Tao, ZHANG Qing-he, HU Xiang-dong, et al. A practical approach for predicting surface settlements induced by shield tunneling[J]. Rock and Soil Mechanics, 2010, 31(4): 1247-1252. (in Chinese))
    [3] 于 宁, 朱合华. 盾构隧道施工地表变形分析与三维有限元模拟[J]. 岩土力学, 2004, 25(8): 1330-1334. (YU Ning, ZHU He-hua. Analysis of earth deformation caused by shield tunnel construction and 3D-FEM simulation[J]. Rock and Soil Mechanics, 2004, 25(8): 1330-1334. (in Chinese))
    [4] 楼晓明, 郑俊杰, 章荣军. 隧道施工引起的地表变形数值模拟[J]. 铁道工程学报, 2007, 108(9): 62-66. (LOU Xiao-ming ZHENG Jun-jie, ZHANG Rong-jun. Simulation of numerical values of surface deformation caused by tunnel construction[J]. Journal of Railway Engineering Society, 2007, 108(9): 62-66. (in Chinese))
    [5] 孔祥兴, 夏才初, 仇玉良, 等. 平行小净距盾构与CRD法黄土地铁隧道施工力学研究[J]. 岩土力学, 2011, 32(2): 516-524. (KONG Xiang-xing, XIA Cai-chu, QIU Yu-liang, et al. Study of construction mechanical behavior of parallel-small spacing metro tunnels excavated by shield method and cross diaphragm (CRD) method in loess region[J]. Rock and Soil Mechanics, 2011, 32(2): 516-524. (in Chinese))
    [6] 郑 刚, 戴 轩. 灾害环境下隧道不同部位漏水对于周围土体及平行隧道的影响研究[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3196-3207. (ZHENG Gang, DAI Xuan. Influence of different leakage positions of tunnel on surrounding soils and parallel tunnel under disaster environment[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3196-3207. (in Chinese))
    [7] VERRUIJT A. Complex variable solution for a deforming circular tunnel in an elastic half plane[J]. Géotechnique, 1997, 21(4): 77-89.
    [8] VERRUIJT A. Deformations of an elastic half plane with a circular cavity[J]. International Journal of Solids and Structures, 1998, 35(21): 2795-2804.
    [9] 王立忠, 吕学金. 复变函数分析盾构隧道施工引起的地基变形[J]. 岩土工程学报, 2007, 29(3): 319-327. (WANG Li-zhong, LÜ Xue-jin. A complex variable solution for different kinds of oval deformation around circular tunnel in an elastic half plane[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 319-327. (in Chinese))
    [10] 韩凯航, 张成平, 王梦恕. 浅埋隧道围岩应力及位移的显式解析解[J]. 岩土工程学报, 2012, 36(12): 2253-2259. (HAN Kai-hang, ZHANG Cheng-ping, WANG Meng-shu. Explicit analytical solutions for stress and displacement of surrounding rock in shallow tunnels[J]. Chinese Journal of Geotechnical Engineering, 2012, 36(12): 2253-2259. (in Chinese))
    [11] 魏 纲, 徐日庆. 软土隧道盾构法施工引起的纵向地面变形预测[J]. 岩土工程学报, 2005, 27(9): 1077-1081. (WEI Gang, XU Ri-qing. Prediction of longitudinal ground deformation due to tunnel construction with shield in soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(9): 1077-1081. (in Chinese))
    [12] 唐晓武, 朱 季, 刘 维, 等. 盾构施工过程中的土体变形研究[J]. 岩石力学与工程学报, 2010, 29(2): 206-211. (TANG Xiao-wu, ZHU Ji, LIU Wei, et al. Research on soil deformation during shield construction process[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 206-211. (in Chinese))
    [13] SAGASETA C. Analysis of undrained soil deformation due to ground loss[J]. Géotechnique, 1988, 38(4): 301-320.
    [14] VERRUIJT A, BOOKER J R. Surface settlements due to deformation of a tunnel in an elastic half plane[J]. Géotechnique, 1996, 46(4): 753-756.
    [15] LOGANATHAN N, POULOS H G. Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 846-856.
    [16] 林存刚, 夏唐代, 梁荣柱, 等. 盾构掘进地面沉降虚拟镜像算法[J]. 岩土工程学报, 2014, 36(8): 1438-1446. (LIN Cun-gang, XIA Tang-dai, LIANG Rong-zhu, et al. Estimation of shield tunnelling-induced ground surface settlements by virtual image technique[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1438-1446. (in Chinese))
    [17] BOBET A. Analytical solutions for shallow tunnels in saturated ground[J]. Journal of Engineering Mechanics, 2001, 127(12): 1258-1266.
    [18] CHOU W I, BOBET A. Prediction of ground deformations in shallow tunnels in clay[J]. Tunnelling and Underground Space Technology, 2002, 17(l): 3-19.
    [19] PARK K H. Elastic Solution for tunneling-induced ground movements in clays[J]. International Journal of Geomechanics, 2004, 4(4): 310-318.
    [20] PARK K H. Analytical solution for tunnelling-induced ground movement in clays[J]. Tunnelling and Underground Space Technology, 2005, 20(3): 249-261.
    [21] YANG J S, LIU B C, WANG M C. Modeling of tunneling-induced ground surface movements using stochastic medium theory[J]. Tunnelling and Underground Space Technology, 2004, 19(2): 113-123.
    [22] YANG X L, WANG J M. Ground movement prediction for tunnels using simplified procedure[J]. Tunnelling and Underground Space Technology, 2011, 26(3): 462-471.
    [23] 韩 煊, 李 宁. 隧道施工引起地层位移预测模型的对比分析研究[J]. 岩石力学与工程学报, 2007, 29(3): 347-352. (HAN Xuan, LI Ning. Comparative analysis of strata prediction models for ground movement induced by tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 29(3): 347-352. (in Chinese))
    [24] TIMOSHENKO P, GOODIER J N. Theory of elasticity[M]. New York: Mc Graw-Hill, 1970.
    [25] GONZALEZ C, SAGASETA C. Patterns of soil deformations around tunnels- application to the extension of Madrid Metro[J]. Computers and Geotechnics, 2001, 28(6): 445-468.
    [26] FLÜEGGE W. Stresses in shells[M]. New York: Springer- Verlag, 1973.
    [27] BOUVARD M, PINTO N. Ame´nagement Capivari- Cachoeira: E´tude du puits en charge[J]. La Houille Blanche(Paris), 1969, 7: 747-760.
    [28] Fernández, Gabriel, Alvarez, Tirso A. Seepage-induced effective stresses and water pressures around pressure tunnels[J]. Journal of Geotechnical Engineering, 2014, 120(1): 108-128.
    [29] SCHLEISS A. Design criteria applied for the lower pressure tunnel of the North Fork Stanislaus River Hydroelectric project in California[J]. Rock Mechanics and Rock Engineering, 1988, 21(3): 161-181.
    [30] HARR M E. Groundwater and seepage[M]. New York: McGraw-Hill, 1962.
    [31] LEE K M, ROWE R K, LO K Y. Subsidence owing to tunnelling. I. Estimating the gap parameter[J]. Canadian Geotechnical Journal, 1992, 29(6): 929-940.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-08
  • 发布日期:  2016-09-24

目录

    /

    返回文章
    返回