Experimental study on pore size characteristics of woven geotextiles subjected to unequal biaxial tensile strains
-
摘要: 有纺土工织物的孔径特征是反滤设计的重要指标。工程中有纺织物常处于不等轴双向受拉状态,引起孔径变化,导致织物反滤性能失效。采用数字图像法测试了不等轴双向拉应变下,3种条膜有纺织物的孔径参数变化,包括孔洞长宽比、开孔面积率、等效孔径(O95)等。对比经纬向应变比2∶1,3∶1,4∶1对试验结果的影响,根据孔径特征变化规律,揭示不等轴双向拉伸引起孔径变化的机理。运用图像法试验结果,验证已推导的双向应变下开孔面积率及孔径理论解。试验结果表明:开孔面积率、等效孔径(O95)均随双向拉应变的增大而增大。纬向应变相同时,经纬向应变比越大,孔洞形态(即孔洞长宽比)变化越大,开孔面积率及孔径变化的斜率越大。理论解较好地预测了开孔面积率及孔径的变化率及数值,孔径参数与双向拉应变呈现近似线性关系。但理论解的孔径计算以孔面积为指标,无法考虑应变比造成的孔形态变化对反滤作用的影响。Abstract: The pore size characteristics are the important parameters in filtration design of woven geotextiles. The filtration applications are typically subjected to unequal biaxial tensile strains, which can cause variations of pore size characteristics and result in the failure of filtration engineering. The digital image analysis is adopted to test the variations of pore size parameters under unequal biaxial tensile strains of 3 slit-film woven geotextiles. The parameters include length-width ratio of pores, percent open area, and characteristics opening size O95. The ratios of warp to weft strains are set to be 2∶1, 3∶1 and 4∶1. The analytical solutions of pore size parameters corresponding to the biaxial strains are compared with the experimental results. The results indicate that the percent open area and O95 increase with the tensile strains. The larger the ratio of warp to weft strain is, the larger the rate of the curves of pore size parameters is, and the larger the change of length-width ratio of pores. The analytical results correlate well with the experimental values and the rates of variations, and the pore size parameters change approximately linearly with biaxial tensile strains. And the calculation of pore size in the analytical solutions depends on the area of pores, neglecting the variation of the shape of pores.
-
[1] 包承纲. 土工合成材料应用原理与工程实践[M]. 北京: 中国水利电力出版社, 2008. (BAO Cheng-gang. The principle and application of geosynthetics in engineering[M]. Beijing: China Water Power Press, 2008. (in Chinese)) [2] CHU J, YAN S W, LI W. Innovative methods for dike construction-an overview[J]. Geotextiles and Geomembranes, 2012, 30(SI): 35-42. [3] YEE T W, LAWSON C R, WANG Z Y, et al. Geotextile tube dewatering of contaminated sediments, Tianjin Eco-City, China[J]. Geotextiles and Geomembranes, 2012, 32: 39-50. [4] 土工合成材料工程应用手册编委会. 土工合成材料工程应用手册[M]. 北京: 中国建筑工业出版社, 2000. (Geosynthetics Engineering Application Manual Compilation Committee. Geosynthetics engineering application manual[M]. Beijing: China Architecture&Building Press, 2000. (in Chinese)) [5] GIROUD J P. Biaxial tensile state of stress in geosynthetics[J]. Geotextiles and Geomembranes,1992, 11(3): 319-325. [6] FOURIE A B, ADDIS P C. Changes in filtration opening size of woven geotextiles subjected to tensile loads[J]. Geotextiles and Geomembranes, 1999, 17(5): 331-340. [7] EDWARDS M, HSUAN G. Permittivity of geotextiles with biaxial tensile loads[C]// 9th International Conference on Geosynthetics. Brazil, 2010: 1135-1140. [8] ZHANG Y P, LIU W C, SHAO WY, et al. Experimental study on water permittivity of woven polypropylene geotextile under tension[J]. Geotextiles and Geomembranes, 2013, 37: 10-15. [9] 张思云, 张 艳, 靳向煜. 土工膜和非织造土工布单向与双向拉伸机理对比试验研究[J]. 东华大学学报(自然科学版), 2014, 40(2): 220-224. (ZHANG Si-yun, ZHANG Yan, JIN Xiang-yu. Comparison studies on unilateral and biaxial strength mechanism of geomembrane and nonwoven geotextiles[J]. Journal of Donghua University(Natural Science), 2014, 40(2): 220-224. (in Chinese)) [10] 邓国红, 余雄鹰, 汤爱华. 十字形双向拉伸试验有限元模拟及分析[J]. 重庆工学院学报(自然科学版), 2007, 5(2): 15-17, 46. (DENG Guo-hong, YU Xiong-ying, TANG Ai-hua. FEM simulation and analysis of cruciform biaxial tensile test[J]. Journal of Chongqing Institute of Technology (Natural Science Edition), 2007, 5(2): 15-17, 46. (in Chinese)) [11] 佘 巍, 唐晓武. 用图像分析法研究有纺土工织物单向受拉时孔径的变化[J]. 岩土工程学报, 2012, 34(8): 1522-1526. (SHE Wei, TANG Xiao-wu. Research on changes of pore size of woven geotextiles affected by uniaxial tension using image analysis method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8):1522-1526. (in Chinese)) [12] 唐 琳. 拉应变对土工织物孔径特征及反滤性能影响的研究[D]. 杭州: 浙江大学, 2014. (TANG Lin. Pore size characteristics and filtration properties of geotextiles subjected to tensile strains[D]. Hangzhou: Zhejiang University, 2014. (in Chinese)) [13] DIERICKX W. Opening size determination of technical textiles used in agricultural applications[J]. Geotextiles and Geomembranes, 1999, 17(4): 231-245. [14] TANG X W, TANG L, SHE W, et al. Prediction of pore size characteristics of woven slit-film geotextiles subjected to tensile strains[J]. Geotextiles and Geomembranes, 2013, 38: 43-80. [15] 唐 琳, 唐晓武, 佘 巍, 等.单向拉伸对土工织物反滤性能影响的试验研究[J]. 岩土工程学报, 2013, 35(4): 785-788. (TANG Lin, TANG Xiao-wu, SHE Wei, et al. Influence of uniaxial tensile strain on filtration characteristics of geotextiles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 785-788. (in Chinese)) -
期刊类型引用(25)
1. 洪嘉伟,张彬,潘道明. 隧道注浆圈渗透系数对邻侧隧道的影响. 交通科技与管理. 2025(01): 147-151 . 百度学术
2. 胡颢,王超林,黄小龙,党爽,刘腾龙. 岩溶隧道对地下水环境影响分析及涌水量预测研究. 贵州大学学报(自然科学版). 2024(02): 103-109+124 . 百度学术
3. 于勇,刘文骏,傅鹤林,胡凯巽. 超高水压超大埋深组合工法水下隧道连接段泄水降压研究. 隧道建设(中英文). 2024(04): 663-672 . 百度学术
4. 樊浩博,陈宏文,赵东平,朱正国,赵梓宇,朱永全,高新强. 在役岩溶隧道衬砌水压分布及预警控制标准研究. 岩土力学. 2024(07): 2153-2166 . 百度学术
5. 魏福成,汪镇,周凤玺. 层状地质条件下注浆模型渗流场解析解. 科学技术与工程. 2024(29): 12723-12733 . 百度学术
6. 魏荣华,张康健,张志强. 铁路隧道深埋水沟防排水技术参数优化研究. 现代隧道技术. 2024(05): 183-192 . 百度学术
7. 雒少江,丁卫华,薛海斌,李玉波,严广艺,宋常贵,张东旭. 基于宏观地质模型分类的深埋输水隧洞衬砌外水压力研究. 中国农村水利水电. 2024(12): 177-184+192 . 百度学术
8. 戚海棠,任旭华,张继勋. 基于井流理论的隧洞外水压力解析计算方法研究. 水力发电. 2023(04): 29-35+74 . 百度学术
9. 黄威,孙云,张建平,王耘梓,张延杰,徐卫亚. 深埋隧洞高外水压力研究进展. 三峡大学学报(自然科学版). 2023(05): 1-11 . 百度学术
10. 雷刚,杨凌武,胡明华,施芸,盛磊. 基于实时扫描的隧道自动开槽机器人电气系统设计. 制造业自动化. 2023(11): 107-110 . 百度学术
11. 王新越,王如宾,王丹,向天兵,王鹏,黄威,张建平,徐卫亚. 滇中引水松林隧洞高外水压力作用数值模拟分析. 隧道与地下工程灾害防治. 2023(04): 72-80 . 百度学术
12. 傅鹤林,安鹏涛,成国文,王仁健,李鲒,余小辉. 考虑注浆圈与复合衬砌时体外排水方式设计. 湖南大学学报(自然科学版). 2022(01): 174-182 . 百度学术
13. 傅鹤林,安鹏涛,成国文,李鲒,余小辉,陈龙. 富水区隧道环向盲管间距优化分析. 现代隧道技术. 2022(02): 20-27 . 百度学术
14. 黄世光,杨艳娜,范全忠,黄靖宇,余磊. 隧道堵水限排设计参数变化规律试验研究. 现代隧道技术. 2022(03): 201-210 . 百度学术
15. 任世林. 四线临海隧道开挖渗流演变及参数影响分析. 铁道科学与工程学报. 2022(07): 1985-1996 . 百度学术
16. 高国庆,齐国庆,陈仲达,刘剑锋. 基于GMS的红崖山隧道渗流场分析与涌水量预测. 水利与建筑工程学报. 2022(04): 142-148+211 . 百度学术
17. 张治国,程志翔,陈杰,吴钟腾,李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验. 隧道与地下工程灾害防治. 2022(03): 77-91 . 百度学术
18. 黄文华,张云. 基于浆液扩散的软弱围岩隧道注浆加固效果研究. 公路. 2021(08): 355-359 . 百度学术
19. 刘世伟,赵书争,付迪,赵强,朱泽奇. 长期渗漏水条件下海陆相浅埋盾构隧道隧顶水土荷载计算. 岩石力学与工程学报. 2021(10): 2149-2160 . 百度学术
20. 袁鸿鹄,刘勇,顾小明,张琦伟,李宏恩,孙洪升,杨良权. 冬奥会综合管廊绿色减排数值模拟分析. 水利水电技术(中英文). 2021(S2): 326-331 . 百度学术
21. 李林毅,阳军生,王树英,包德勇,高超. 体外排水方式在隧道工程中的研究及应用. 铁道学报. 2020(10): 118-126 . 百度学术
22. 张进. 富水环境下隧道地下水限量排放的衬砌外水压力分析. 四川建筑. 2020(05): 96-98+102 . 百度学术
23. 和晓楠,周晓敏,郭小红,徐衍,马文著. 深埋隧道注浆加固围岩非达西渗流场及应力场解析. 中国公路学报. 2020(12): 200-211 . 百度学术
24. 杨栋. 松散区盾构隧道注浆控制技术研究. 现代交通技术. 2020(06): 30-34 . 百度学术
25. 关振长,任璐瑶,何亚军,胡宏林. 山岭隧道渗流及衬砌等效渗透系数的实用计算. 水利与建筑工程学报. 2020(06): 52-56 . 百度学术
其他类型引用(20)
计量
- 文章访问数: 335
- HTML全文浏览量: 4
- PDF下载量: 236
- 被引次数: 45