• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于透明土的取土管贯入扰动变形试验研究

吴跃东, 罗如平, 刘坚, 杨冬

吴跃东, 罗如平, 刘坚, 杨冬. 基于透明土的取土管贯入扰动变形试验研究[J]. 岩土工程学报, 2016, 38(8): 1507-1512. DOI: 10.11779/CJGE201608019
引用本文: 吴跃东, 罗如平, 刘坚, 杨冬. 基于透明土的取土管贯入扰动变形试验研究[J]. 岩土工程学报, 2016, 38(8): 1507-1512. DOI: 10.11779/CJGE201608019
WU Yue-dong, LUO Ru-ping, LIU Jian, YANG Dong. Soil disturbance deformation induced by penetration of sampler tube based on transparent soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1507-1512. DOI: 10.11779/CJGE201608019
Citation: WU Yue-dong, LUO Ru-ping, LIU Jian, YANG Dong. Soil disturbance deformation induced by penetration of sampler tube based on transparent soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1507-1512. DOI: 10.11779/CJGE201608019

基于透明土的取土管贯入扰动变形试验研究  English Version

详细信息
    作者简介:

    吴跃东(1969- ),男,福建云霄人,副教授,博士,主要从事岩土工程测试及软土地基处理研究。E-mail: hhuwyd@163.com。

Soil disturbance deformation induced by penetration of sampler tube based on transparent soils

  • 摘要: 在岩土工程勘察取样过程中,取土管的贯入会引起土体的扰动变形,影响到对土体物理力学性质的准确评价。为了研究取土管贯入过程中土体扰动变形特性,基于透明土及PIV技术,开发了相应的取土管贯入模型试验系统,进行了取土管的贯入试验,得到了在取土管贯入过程中土体扰动变形场的分布特性。试验结果表明:土体扰动变形随着取土管贯入深度增大而增大,管外土体主要表现为斜向上的隆起变形;管内土体主要为向上的隆起变形,在深度方向最大变形位于取土管中间部位;不同截面处土体其变形规律基本一致,截面间土体剪切变形较小。
    Abstract: The soil disturbance deformation induced by penetration of sampler tube has a great influence on the accuracy of physical and mechanical evaluation of soils in the soil investigation engineering. A small-scale model test system is developed to study the non-intrusive measurement of the soil disturbance deformation characteristics during penetration of sampler tube using the transparent soils and PIV (particle image velocimetry) technique. Sampling penetration tests are conducted, and the soil deformation characteristics during penetration of sampler tube are obtained. The test results show that the soil disturbance deformation increases with the penetration depth of sampler tube, and the upheaval deformation of soils outside the sampler is dominated. The disturbance deformation of soils in the sampler is mainly upheaval, and the maximum upheaval deformation occurs at the middle of the sampler in the depth direction. The deformation distribution characteristics of soils on different sections in the sampler are nearly the same, and the shear strain of soils between adjacent sections is relatively small.
  • [1] HVORSLEV M J. Subsurface exploration and sampling of soils for civil engineering purposes[R]. Vicksburg: U.S Army Corp. of Engineers Waterways Experiment Station, 1949.
    [2] 魏汝龙, 王年香. 赤湾港软土取土质量的研究[J]. 港口工程, 1989(6): 1-6. (WEI Ru-long, WANG Nian-xiang. Research of sampling quality for Chi-wan port soft clay[J]. Port Engineering, 1989(6): 1-6. (in Chinese))
    [3] CLAYTON C R I, SIDDIQUE A, HOPPER R J. Effects of sampler design on tube sampling disturbance—numerical and analytical investigations[J]. Géotechnique, 1998, 48(6): 847-867.
    [4] BALIGH M M, AZZOUZ A S, CHIN C T. Disturbances due to “ideal” tube sampling[J]. Journal of Geotechnical Engineering, 1987, 113(7): 739-757.
    [5] 左文荣, 吴跃东, 李治国, 等. 取土器贯入土体引起土体扰动的理论分析[J]. 河海大学学报(自然科学版), 2009, 37(6): 702-706. (ZUO Wen-rong, WU Yue-dong, LI Zhi-guo, et al. Theoretical analysis of disturbance of soils caused by penetration of soil samplers[J]. Journal of Hohai University (Natural Sciences), 2009, 37(6): 702-706. (in Chinese))
    [6] 李家平, 高大钊, 李永盛. 取土管切入引起土体扰动的数值模拟分析[J]. 地质与勘探, 2003(增刊2): 113-118. (LI Ji-ping, GAO Da-zhao, LI Yong-sheng. Numerical analysis of soil disturbance induced by sampler penetration[J]. Geology and Exploration, 2003(S2): 113-118. (In Chinese))
    [7] WHITE D J, TAKE W A, BOLTON M D. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry[J]. Géotechnique, 2003, 53(7): 619-631.
    [8] WHITE D J, BOLTON M D. Displacement and strain paths during plane-strain model pile installation in sand[J]. Géotechnique, 2004, 54(6): 375-397.
    [9] YAN W M, NG I T, CHEUK C Y. Displacement field around an open-tube sampling[C]// Physical Modelling in Geotechnics, Two Volume Set: Proceedings of the 7th International Conference on Physical Modelling in Geotechnics (ICPMG 2010). Zurich: CRC Press, 2010, 1: 411.
    [10] ISKANDER M, LAI J, OSWALD C, et al. Development of a transparent material to model the geotechnical properties of soils[J]. Geotechnical Testing Journal, 1994, 17(4): 425-433.
    [11] ISKANDER M, SADEK S, LIU Jin-yuan. Optical measurement of deformation using transparent silica to model sand[J]. International Journal of Physical Modelling in Geotechnics, 2002, 2(4): 13-26.
    [12] HOVER E D, NI Q, GUYMER I. Investigation of centreline strain path during tube penetration using transparent soil and particle image velocimetry[J]. Géotechnique Letters, 2013, 3: 37-41.
    [13] LIU J, ISKANDER M G. Modelling capacity of transparent soil[J]. Canadian Geotechnical Journal, 2010, 47(4): 451-460.
    [14] 孔纲强, 刘 璐, 刘汉龙, 等. 玻璃砂透明土与标准砂变形特性对比三轴试验研究[J]. 岩土工程学报, 2013, 35(6): 1140-1146. (KONG Gang-qiang, LIU Lu, LIU Han-long, et al. Comparative analysis on the deformation characteristics of transparent glass sand and standard sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1140-1146. (in Chinese))
    [15] 孔纲强, 刘 璐, 刘汉龙, 等. 玻璃砂透明土与标准砂强度特性对比试验研究[J]. 建筑材料学报, 2014, 17(2): 250-255. (KONG Gang-qiang, LIU Lu, LIU Han-long, et al. Comparative analysis on the strength characteristics of transparent glass sand and standard sand[J]. Journal of Building Materials, 2014, 17(2): 250-255. (in Chinese))
    [16] RAFFEL M, WILLERT C E, KOMPENHANS J. Particle image velocimetry: a practical guide[M]. Berlin: Springer, 2007.
    [17] YUAN B, LIU J, CHEN W, et al. Development of a robust Stereo-PIV system for 3-D soil deformation measurement[J]. Journal of Testing and Evaluation, 2012, 40(2): 256-264.
    [18] SUN J, LIU J. Visualization of tunnelling-induced ground movement in transparent sand[J]. Tunnelling and Underground Space Technology, 2014, 40: 236-240.
    [19] WHITE D J, TAKE W A. GeoPIV: Particle Image Velocimetry (PIV) software for use in geotechnical testing[R]. London: Cambridge Universiyt Department of Engineering, 2002.
  • 期刊类型引用(24)

    1. 李东明,聂一丹,晁阳,齐慧君,林潮宁. 基于改进聚类方法的大坝安全监测算法. 水力发电. 2025(04): 97-103+110 . 百度学术
    2. 李扬涛,包腾飞,李田雨. 深水大坝缺陷鲁棒实时检测方法. 武汉大学学报(信息科学版). 2025(04): 684-698 . 百度学术
    3. 穆明垚,王岳航,冯国磊. 水库除险加固方案设计与技术优化及坝体稳定性分析. 粘接. 2025(04): 163-165+169 . 百度学术
    4. 邓鹏. 物联网技术在小水库大坝安全监测中的应用现状. 中国宽带. 2025(04): 95-97 . 百度学术
    5. 董蕊. 基于BIM技术在土石坝渗流安全监控与预警. 地下水. 2025(02): 260-262 . 百度学术
    6. 高寒. 机电设备中智能故障检测诊断技术的运用. 黑龙江科学. 2024(02): 64-66 . 百度学术
    7. 徐新超,张若冰. 降水极端情况下某闸坝的自适应防洪安全运行管理研究. 珠江水运. 2024(02): 119-121 . 百度学术
    8. 海日姑·阿布都热西提. 小型水库雨水情测报和大坝安全监测系统设计与实践. 中国水运(下半月). 2024(03): 88-90 . 百度学术
    9. 尹光景,李晨玉,曾子彬,赵芃芃,雷鹏,常留红. 基于Vue.js+Django的大坝安全监测信息管理系统开发. 软件. 2024(01): 47-49+82 . 百度学术
    10. 王猛,刘英英,周明明. 浅析大坝失事主要原因及应对措施方案. 水利规划与设计. 2024(05): 81-83+105 . 百度学术
    11. 刘郴玲,蒋光灿. 基于龟石水库监测资料的大坝安全性态评估分析. 人民珠江. 2024(S1): 29-33 . 百度学术
    12. 李东明,李龙龙,晁阳,李同春,齐慧君,林潮宁. 大坝安全监测数字孪生系统应用研究. 水力发电. 2024(09): 110-117 . 百度学术
    13. 沈晓雷,余泉,季昊巍. 基于传感器的海上风电钢结构腐蚀检测方法. 中国水运. 2024(06): 91-92 . 百度学术
    14. 盛金保,李宏恩,王芳. 智能大坝建设与韧性提升发展路径研究. 中国水利. 2024(24): 68-77 . 百度学术
    15. 王琛,陈锦,谢应兵. 浅析现代水利工程成本控制理论及其存在问题. 红水河. 2023(01): 7-10 . 百度学术
    16. 李松培,周江,黎海波,熊静,杨志虎,刘家森. 大坝安全在线监控及智能管理平台探索与应用. 云南水力发电. 2023(06): 173-176 . 百度学术
    17. 窦飞,薛江寒. 岱山大坝渗流预测模型研究及渗漏问题分析. 海河水利. 2023(06): 61-68+112 . 百度学术
    18. 李宗坤,王特,葛巍,景来红,罗秋实,杨风威,宋志宇,马福恒. 黄河流域梯级水库大坝风险评估与管控的战略思考. 人民黄河. 2023(07): 1-6 . 百度学术
    19. 刘越,周志维. 基于小概率法的大坝多源监测预警阈值研究. 江西水利科技. 2023(04): 252-256 . 百度学术
    20. 热米拉·塔什珀拉提. 溢洪道水流特性的性能模拟研究. 水利科技与经济. 2023(07): 122-127 . 百度学术
    21. 何永祥. 甘肃永昌皇城水库大坝安全评价分析. 水利科学与寒区工程. 2023(09): 142-144 . 百度学术
    22. 李宇文. 小型病险水库安全鉴定及加固改造实践——以水磨坑水库为例. 湖南水利水电. 2023(05): 75-78 . 百度学术
    23. 李宗坤,王特,葛巍,景来红,崔秋晶,焦余铁. 考虑溃坝后果的水库工程等级划分方法. 水科学进展. 2023(05): 753-765 . 百度学术
    24. 唐忠海,陈章傑,刘书婷,廖渝,李欣艺,李滟浩,袁士才. 无人机航测技术在大坝裂缝检测中的应用研究. 科技创新与生产力. 2022(10): 63-65 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 33
出版历程
  • 发布日期:  2016-08-24

目录

    /

    返回文章
    返回