• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

纯主应力轴旋转下饱和软黏土的循环弱化及非共轴性

钱建固, 杜子博

钱建固, 杜子博. 纯主应力轴旋转下饱和软黏土的循环弱化及非共轴性[J]. 岩土工程学报, 2016, 38(8): 1381-1390. DOI: 10.11779/CJGE201608004
引用本文: 钱建固, 杜子博. 纯主应力轴旋转下饱和软黏土的循环弱化及非共轴性[J]. 岩土工程学报, 2016, 38(8): 1381-1390. DOI: 10.11779/CJGE201608004
QIAN Jian-gu, DU Zi-bo. Cyclic degradation and non-coaxiality of saturated soft clay subjected to pure rotation of principal stress axis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1381-1390. DOI: 10.11779/CJGE201608004
Citation: QIAN Jian-gu, DU Zi-bo. Cyclic degradation and non-coaxiality of saturated soft clay subjected to pure rotation of principal stress axis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1381-1390. DOI: 10.11779/CJGE201608004

纯主应力轴旋转下饱和软黏土的循环弱化及非共轴性  English Version

基金项目: 国家自然科学基金项目(41272291,51238009,51578413)
详细信息
    作者简介:

    钱建固(1972- ),男,教授,博士生导师,从事软土力学与本构理论研究。E-mail: qianjiangu@tongji.edu.cn。

Cyclic degradation and non-coaxiality of saturated soft clay subjected to pure rotation of principal stress axis

  • 摘要: 采用空心圆柱扭剪仪对原状饱和软黏土进行了纯主应力轴旋转应力路径的循环不排水试验,加载过程中维持平均应力、广义剪应力和中主应力系数不变。观测了孔隙水压和各应变分量在循环加载过程中的变化特性,着重探讨了中主应力系数及广义剪应力对变形刚度以及非共轴特性的影响规律。主应力偏转的循环剪切路径下,存在扭转剪切和轴向剪切两种不同的循环应力应变响应。试验结果表明:循环加载路径下饱和软黏土的孔压及应变产生累积效应,应力应变刚度呈现各向异性弱(强)化效应,而应变增量呈现显著的非共轴性;中主应力系数b影响特性表现为,b值越大则刚度弱化越显著。试验观察还发现,剪应力水平较低时循环变形刚度表现为强化,非共轴角趋于增大;反之,剪应力水平较高时,伴随着循环弱化,非共轴角趋于减小。
    Abstract: A series of cyclic undrained tests on saturated soft clay subjected to pure rotation of the principal stress axis are conducted using the hollow cylinder apparatus (HCA). The magnitudes of the mean principal stress and the generalized shear stress as well as those of the intermediate principal stress parameter are kept constant during cyclic loading. The development rules of pore water pressure and strain components during loading are studied. Specifically, the effects of the intermediate principal stress parameter and the generalized shear stress level on the stiffness of stress-strain as well as non-coaxiality are addressed. During the cyclic rotation of the principal stress axis, two distinct cyclic shear responses, i.e., torsional shear stress-strain and shear stress-strain responses, are activated. The experimental observations show that along the cyclic loading path, the pore pressure and the strain accumulated. Meanwhile, the shear stiffness over stress-strain loops exhibits an anisotropic cyclic degradation, and the strain rate is manifested as non-coaxiality. As for the effect of intermediate principal stress parameter b, the stiffness decreases with the increasing value of b. It is also found that the non-coaxial angle increases with growing stiffness at a low shear stress level. Inversely, the stiffness reduction and non-coaxial angle increase are observed at a high shear stress level.
  • [1] ISHIHARA K. Soil response in cyclic loading induced by earthquakes, traffic and waves[C]// Proceedings of the 7th Asian Regional Conference on Soil Mechanics and Foundation Engineering. 1983: 42-66.
    [2] ROSCOE K, BASSETT R, COLE E. Principal axes observed during simple shear of a sand[C]// Proceedings Geotechnical Conference on Shear Strength Properties of Nature Soils and Rocks Norwegian Geotechnical Society. Oslo, 1967: 231-237.
    [3] ISHIHARA K, TOWHATA I. Sand response to cyclic rotation of principal stress directions as induced by wave loads[J]. Soils and Foundations, 1983, 23(4): 11-26.
    [4] SYMES M J, GENS A, HIGHT D W. Undrained anisotropy and principal stress rotation in saturated sand[J]. Géotechnique, 1984, 34(1): 11-27.
    [5] SYMES M J, GENS A, HIGHT D W. Drained principal stress rotation in saturated sand[J]. Géotechnique, 1988, 38(1): 59-81.
    [6] MIURA K, MIURA S, TOKI S. Deformation behavior of anisotropic sand under principal stress axes rotation[J]. Soils and Foundations, 1986, 26(1): 36-52.
    [7] VAID Y P, SAYAO A, HOU E, et al. Generalized stress path dependent soil behaviour with a new hollow cylinder tortional apparatus[J]. Canadian Geotechnical Journal, 1990, 27(5): 601-616.
    [8] NAKATA Y, HYODO M, MURATA H, et al. Flow deformation of sands subjected to principal stress rotation[J]. Soils and Foundations, 1998, 38(2): 115-128.
    [9] TONG Z X, YU Y L, ZHANG J M, et al. Deformation behavior of sands subjected to cyclic rotation of principal stress axes[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1196-1202.
    [10] 童朝霞, 张建民, 于艺林, 等. 中主应力系数对应力主轴循环旋转条件下砂土变形特性的影响[J]. 岩土工程学报, 2009, 31(6): 946-952. (TONG Zhao-xia, ZHANG Jian-min, YU Yi-lin, et al. Effects of intermediate principal stress parameter on deformation behavior of sands under cyclic rotation of principal stress axes[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 946-952. (in Chinese))
    [11] 郭 莹, 栾茂田, 何 杨, 等. 主应力方向循环变化对饱和松砂不排水动力特性的影响[J]. 岩土工程学报, 2005, 27(4): 403-409. (GUO Ying, LUAN Mao-tian, HE Yang, et al. Effect of variation of principal stress orientation during cyclic loading on undrained dynamic behavior of saturated loose sands[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 403-409. (in Chinese))
    [12] 钱建固, 王永刚, 张甲锋, 等. 交通动载下饱和软黏土累计变形的不排水循环扭剪试验 [J]. 岩土工程学报, 2013, 35(10):1790-1798. (QIAN Jian-gu, WANG Yong-gang, ZHANG Jia-feng, et al. Undrained cyclic torsion shear tests on permanent deformation responses of soft saturated clay to traffic loadings[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1790-1798. (in Chinese))
    [13] YANG Z X, LI X S, YANG J. Undrained anisotropy and rotational shear in granular soil[J]. Géotechnique, 2007, 57(4): 371-384.
    [14] SHIBUYA S, HIGHT D W, SYMES M J. Discussion on the paper by Ishihara and Towhata (1983)[J]. Soils and Foundations, 1984, 24(3): 107-110.
    [15] TONG Z X, ZHANG J M, YU Y L, et al. Drained deformation behavior of anisotropic sands during cyclic rotation of principal stress axes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(11): 1509-1518.
    [16] CAI Y, YU H S, WANATOWSKI D, et al. Noncoaxial behavior of sand under various stress paths[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(8): 1381-1395.
    [17] AKAGI H, SAITOH J. Dilatancy characteristics of clayey soil under principal axes rotation[C]// Proceedings of the International Symposium on Prefailure Deformation Characteristics of Geomaterial. Sapppro: Balkema A A. 1994: 311-314.
    [18] AKAGI H, YAMAMOTO H. Stress dilatancy relation of undisturbed clay under principal axes rotation[J]. Deformation and Progressive Failure in Geomechanics, 1997, 211-216.
    [19] 沈 扬, 周 建, 龚晓南, 等. 考虑主应力方向变化的原状软黏土应力应变性状试验研究[J]. 岩土力学, 2009, 30(12): 3720-3726. (SHEN Yang, ZHOU Jian, GONG Xiao-nan, et al. Experimental study of stress-strain properties of intact soft clay considering the change of principal stress direction[J]. Rock and Soil Mechanics, 2009, 30(12): 3720-3726. (in Chinese))
    [20] 严佳佳, 周 建, 管林波, 等. 杭州原状软黏土非共轴特性与其影响因素试验研究[J]. 岩土工程学报, 2013, 35(1): 96-102. (YAN Jia-jia, ZHOU Jian, GUAN Lin-bo, et al. Experimental study on non-coaxiality and influence factors of intact Hangzhou soft clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 96-102. (in Chinese))
    [21] 严佳佳, 周 建, 龚晓南, 等. 主应力轴纯旋转条件下原状黏土变形特性研究[J]. 岩土工程学报, 2014, 36(3): 474-481. (YAN Jia-jia, ZHOU Jian, GONG Xiao-nan, et al. Deformation behavior of intact clay under pure principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 474-481. (in Chinese))
    [22] ZHOU J, YAN J J, LIU Z Y, et al. Undrained anisotropy and non-coaxial behavior of clayey soil under principal stress rotation[J]. Journal of Zhejiang University, 2014, 15(4): 241-254.
    [23] 杨彦豪, 周 建, 周红星. 主应力轴旋转条件下软黏土的非共轴研究[J]. 岩石力学与工程学报, 2015, 34(6): 1259-1266. (YANG Yan-hao, ZHOU Jian, ZHOU Hong-xing. Non-coaxial behaviour of soft clay subjected to principal stress rotation[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1259-1266. (in Chinese))
    [24] HIGHT D W, GENS A, SYMES M J. The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils[J]. Géotechnique, 1983, 33(44): 355-383.
    [25] DESRUES J, CHAMBON R. Shear band analysis and shear moduli calibration[J]. International Journal of Solids and Structures, 2002, 39(13): 3757-3776.
    [26] QIAN J G, YANG J, HUANG M S. Three-dimensional noncoaxial plasticity modeling of shear band formation in geomaterials[J]. Journal of Engineering Mechanics, 2008, 134(4): 322-329.
    [27] GUTIERREZ M, ISHIHARA K, TOWHATA I. Flow theory for sand during rotation of principal stress direction [J]. Soils and Foundations, 1991, 31(4):121-132.
    [28] WRONG R K S, ARTHUR J R F. Sand sheared by stresses with cyclic variation in direction[J]. Géotechnique, 1986, 36(2): 215-226.
    [29] RUDNICKI J W, RICE J R. Conditions for the localization of the deformation in pressure sensitive dilatant materials[J]. Journal of the Mechanics & Physics of Solids, 1975, 23(6): 371-394.
计量
  • 文章访问数:  436
  • HTML全文浏览量:  18
  • PDF下载量:  333
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-23
  • 发布日期:  2016-08-24

目录

    /

    返回文章
    返回