• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

地层条件对剪胀性砂土边坡地震后延迟变形的影响

王刚, 张建民, 魏星

王刚, 张建民, 魏星. 地层条件对剪胀性砂土边坡地震后延迟变形的影响[J]. 岩土工程学报, 2016, 38(7): 1345-1350. DOI: 10.11779/CJGE201607024
引用本文: 王刚, 张建民, 魏星. 地层条件对剪胀性砂土边坡地震后延迟变形的影响[J]. 岩土工程学报, 2016, 38(7): 1345-1350. DOI: 10.11779/CJGE201607024
WANG Gang, ZHANG Jian-min, WEI Xing. Effect of soil profile on post-earthquake delayed deformation of sand slopes[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1345-1350. DOI: 10.11779/CJGE201607024
Citation: WANG Gang, ZHANG Jian-min, WEI Xing. Effect of soil profile on post-earthquake delayed deformation of sand slopes[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1345-1350. DOI: 10.11779/CJGE201607024

地层条件对剪胀性砂土边坡地震后延迟变形的影响  English Version

基金项目: 国家自然科学基金项目(51209179);水沙科学与水利水电工程国家重点实验室开放研究基金项目(sklhse-2015-D-02)
详细信息
    作者简介:

    王刚(1978– ),男,博士,教授,主要从事土的本构理论、土动力学及地震工程、数值分析等方面的研究工作。E-mail: cewanggang@163.com。

Effect of soil profile on post-earthquake delayed deformation of sand slopes

  • 摘要: 剪胀性砂土流滑现象与自然排水条件下孔压重分布导致的局部土体强制吸水有关,须放在具体边值问题中来阐释。同时考虑孔隙水压力扩散、转移以及吸水剪切下饱和砂土应力应变行为的流动变形简化分析方法,研究了相对不透水层的位置、地基土体的渗透系数对边坡地震后延迟变形的影响特征和规律。地震后延迟侧向变形总是集中发生在孔隙水渗流被阻滞的界面,界面处砂土强制吸水量越大,发生的侧向位移量就越大;设置穿透相对不透水层的排水通道可有效减小边坡的侧向变形。地震后侧向流动变形的发展过程取决于孔隙水扩散、转移的速度,是由具体边值问题中土体的渗透系数决定的,饱和土体的黏滞特性对于变形发展过程的影响可以忽略。
    Abstract: The post-earthquake flow deformation of dilative sand is associated with the compulsory water absorption due to seepage water inflow in boundary value problems. A simplified procedure, which can both reproduce the diffusion and migration of excess pore water pressure and describe the behavior of sand under water absorption conditions, is employed to study the effect of different soil profiles and soil permeability on the post-earthquake flow deformation of sand slopes. It is found that the flow deformation always concentrates on the interface where the flow of the seepage water is blocked. The thicker the liquefied layer beneath the interface is, the larger the water absorption amount of the sand on the interface is, and hence the flow deformation is larger. The amount of flow deformation can be reduced greatly by setting drainage columns to mitigate the accumulation of the excess pore water pressure beneath the blocking interface. More importantly, it is suggested that the rate of flow deformation should be controlled by the permeability of soil, and the viscosity of the materials can be ignored practically.
  • [1] SEED H B, LEE K L, IDRISS I M, et al. The slides in the San Fernando Dams during the Earthquake of February 9, 1971[J]. Journal of the Geotechnical Engineering Division, ASCE, 1975, 101(GT7): 651-688.
    [2] 徐志英, 沈珠江. 1975年辽南地震时石门土坝滑动有效应力动力分析[J]. 水利学报, 1982(3): 13-22. (XU Zhi-ying, SHEN Zhu-jiang. Dynamic effective stress analysis of Shi-men earthquake dam slide during 1975 Earthquake in southern Liaoning province[J]. Chinese Journal of Hydraulic Engineering, 1982(3): 13-22. (in Chinese))
    [3] 清华设计组,密云水库抗震防汛指挥部设计处. 白河主坝地震滑坡的震害分析和抗震加固[J]. 清华大学学报(自然科学版), 1979, 19(2): 18-34. (Qinghua Design Section, Design Department of Earthquake Resistant and Flood Control Command of Miyan Reservoir. An analysis of the damage of slope stability by earthquake of the Paiho Main Dam and its earthquake resistant strengthening[J]. Journal of Tsinghua University(Science and Technology), 1979, 19(2): 18-34. (in Chinese))
    [4] BERRILL J B, CHRISTENSEN S A, KEENAN R J, et al. Lateral spreading loads on a piled bridge foundation[C]// Proc Seismic Behavior of Ground and Geotechnical Structures. Balkema, 1997: 173-183.
    [5] National Research Council. Liquefaction of soils during earthquakes[R]. Washington D C: National Academy Press, 1985: 1-240.
    [6] TOWHATA I, SASAKI Y, TOKIDA K, et al. Prediction of permanent displacement of liquefaction ground by means of minimum energy principle[J]. Soils and Foundations, 1992, 32(3): 97-116.
    [7] FIEGEL G L, KUTTER B L. Liquefaction mechanism for layered soils[J]. Journal of Geotechnical Engineering, 1994, 120(4): 737-755.
    [8] KOKUSHO T, KOJIMA T. Mechanism for post-liquefaction water film generation in layered sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(2): 129-137.
    [9] MALVICK E J, KUTTER B L, BOULANGER R W, et al. Shear localization due to liquefaction-induced void redistribution in a layered infinite slope[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(10): 1293-1303.
    [10] YOSHIMINE M, NISHIZAKI H, AMANO K, et al. Flow deformation of liquefied sand under constant shear load and its application to analysis of flow slide of infinite slope[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(2/3/4): 253-264.
    [11] 王 刚, 张建民, 魏 星, 等. 剪胀性砂土地震后流滑的机理和模拟[J]. 岩土工程学报, 2015, 37(6): 988-995. (WANG Gang, ZHANG Jian-min, WEI Xing, et al. Mechanism and modeling of post-earthquake flow deformation of dilative sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 988-995. (in Chinese))
    [12] 王 刚, 张建民. 砂土液化大变形的弹塑性循环本构模型[J]. 岩土工程学报, 2007, 29(1): 51-59. (WANG Gang, ZHANG Jian-min. A cyclic elasto-plastic constitutive model for evaluation of large post-liquefaction deformation of sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 51-59. (in Chinese))
    [13] ZHANG J M, WANG G. Large post-liquefaction deformation of sand, part I: physical mechanism, constitutive description and numerical algorithm[J]. Acta Geotechnica, 2012, 7(2): 69-113.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-24
  • 发布日期:  2016-07-24

目录

    /

    返回文章
    返回