• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

有限土体刚性挡墙平动模式被动土压力试验研究

应宏伟, 张金红, 王小刚, 李冰河, 朱伟

应宏伟, 张金红, 王小刚, 李冰河, 朱伟. 有限土体刚性挡墙平动模式被动土压力试验研究[J]. 岩土工程学报, 2016, 38(6): 978-986. DOI: 10.11779/CJGE201606002
引用本文: 应宏伟, 张金红, 王小刚, 李冰河, 朱伟. 有限土体刚性挡墙平动模式被动土压力试验研究[J]. 岩土工程学报, 2016, 38(6): 978-986. DOI: 10.11779/CJGE201606002
YING Hong-wei, ZHANG Jin-hong, WANG Xiao-gang, LI Bing-he, ZHU Wei. Experimental analysis of passive earth pressure against rigid retaining wall under translation mode for finite soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 978-986. DOI: 10.11779/CJGE201606002
Citation: YING Hong-wei, ZHANG Jin-hong, WANG Xiao-gang, LI Bing-he, ZHU Wei. Experimental analysis of passive earth pressure against rigid retaining wall under translation mode for finite soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 978-986. DOI: 10.11779/CJGE201606002

有限土体刚性挡墙平动模式被动土压力试验研究  English Version

基金项目: 国家自然科学基金项目(51278462); 浙江省建设科技研究与开发项目
详细信息
    作者简介:

    应宏伟(1971- ),男,副教授,主要从事土力学、地下工程等方面的教学和科研工作。E-mail: ice898@zju.edu.cn。

Experimental analysis of passive earth pressure against rigid retaining wall under translation mode for finite soils

  • 摘要: 经典的库仑或朗肯土压力理论无法适用有限土体情况下的土压力问题。利用研制的土压力试验模型装置,进行了一组不同填土宽度的刚性挡墙平动模式室内模型试验,采用微型土压力盒量测从静止状态到被动极限状态的水平土压力分布的变化,利用颗粒图像测速技术研究土体内滑裂面发展规律。试验结果表明:半无限土体情况下的被动土压力大小、分布和合力作用点与库仑被动土压力较为接近。而有限宽度情况下移动挡墙上各深度的被动土压力值均大于库仑被动土压力,且土体宽度越窄,挡墙的被动极限位移有增大趋势,挡墙下部的被动土压力增大更明显,土压力分布的非线性程度愈高,被动土压力系数越大,被动土压力合力作用点明显往墙底移动。随着填土宽度的减小,填土表面的隆起愈明显,滑裂面的倾角略有增大。当移动挡墙达到或接近极限状态时,固定边界上的水平土压力随填土宽度的减小而逐渐增大,甚至接近库仑被动土压力。
    Abstract: It is inappropriate to calculate the earth pressure for finite soils using the classical Coulomb or Rankine earth pressure theory. A series of laboratory model tests with different widths of backfill are conducted for the passive case of a rigid retaining wall subjected to horizontal translation. The change in lateral earth pressure distribution from the at-rest condition to the passive condition is monitored by using a set of pressure cells. The particle image velocimetry technique is employed to observe the development of a failure zone in the soils. The experiment results show that there is a good agreement between the measured earth pressures and the Coulomb’s solution in the case of infinite soils. However, the passive earth pressures on the moving retaining wall for finite soils are much more than the Coulomb’s solution. With the decrease of the soil width, the limited displacement of the wall under passive state seems to increase, and the passive earth pressures also increase significantly when the heights of the application points of the resultant earth pressure move down gradually. Moreover, with the decrease of the soil width, the heave of the backfill surface increases gradually, the inclination angles of the slip surface increase slightly, and the lateral earth pressures on the fixed boundary also increase gradually.
  • [1] TERZAGHI K. Record earth pressure testing mechine[J]. Engineering News Record, 1932, 109(13): 365-369.
    [2] FANG Y S, ISHIBASHI I. Static earth pressures with various wall movements[J]. Journal of Geotechnical Engineering, 1986, 112 (3): 317-333.
    [3] 周应英, 任美龙. 刚性挡土墙主动土压力的试验研究[J]. 岩土工程学报, 1990, 12(2): 19-26. (ZHOU Ying-ying, REN Mei-long. An experimental study on active earth pressure behind rigid retaining wall[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(2): 19-26. (in Chinese))
    [4] CHANG M. Lateral earth pressures behind rotating walls[J]. Canadian Geotechnical Journal, 1997, 34(4): 498-509.
    [5] O’NEAL T S, HAGERTY D J. Earth pressures in confined cohesionless backfill against tall rigid walls: a case history[J]. Canadian Geotechnical Journal, 2011, 48(8): 1188-1197.
    [6] JAMES R G, BRANSBYP L. ROSCOE K H. Experimental and theoretical investigations of a passive earth pressure problem[J]. Géotechnique, 1970, 20(1): 17-37.
    [7] ROSCOE K H. The influence of strains in soil mechanics[J]. Géotechnique, 1970, 20(2): 129-170.
    [8] FANG Y S, CHEN T J, WU B F. Passive earth pressure with various wall movements[J]. Journal of Geotechnical Engineering, 1994, 120 (8): 1307-1323.
    [9] KOBAYSHI Y. Laboratory experiments with an oblique pressure wall and rigid plasticity solutions[J]. Soils and Foundations, 1998, 38 (1): 121-129.
    [10] FANG Y S, HO Y C, CHEN T J. Passive earth pressure with critical state concept[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128 (8): 651-659.
    [11] 徐日庆, 陈页开, 杨仲轩, 等. 刚性挡墙被动土压力模型试验研究[J]. 岩土工程学报, 2002, 24(5): 569-575. (XU Ri-qing, CHEN Ye-kai, YANG Zhong-xuan, et al. Experimental research on the passive earth pressure acting on a rigid wall[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(5): 569-575. (in Chinese))
    [12] HANNA A M, KHOURY I A. Passive earth pressure of overconsolidated cohesionless backfill[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(8): 978-986.
    [13] FRYDMAN S, KEISSAR I. Earth pressures on retaining walls near rock faces[J]. Journal of Geotechnical Engineering, 1987, 113(6): 586-599.
    [14] TAKE W A, VALSANGKAR A J. Earth pressures on unyielding retaining walls of narrow backfill width[J]. Canadian Geotechnical Journal, 2001, 38(6): 1220-1230.
    [15] KHOSRAVI M H, PIPATPOMGSA T, TAKEMURA J. Experimental analysis of earth pressure against rigid retaining walls under translation mode[J]. Géotechnique, 2013, 63(12): 1020-1028.
    [16] 朱 伟. 考虑有限土体及挡墙变位影响的土压力试验与理论研究[D]. 杭州: 浙江大学, 2014. (ZHU Wei. Experimental and theoretical study on earth pressures considering limited soils and retaining wall deformation[D]. Hangzhou: Zhejiang University, 2014. (in Chinese))
    [17] 应宏伟, 黄 东, 谢新宇. 考虑邻近地下室外墙侧压力影响的平动模式挡土墙主动土压力研究[J]. 岩石力学与工程学报, 2011, 30(1): 2970-2978. (YING Hong-wei, HUANG Dong, XIE Xin-yu. Study of active earth pressure on retaining wall subject to translation mode considering lateral pressure on adjacent existing basement exterior wall[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(1): 2970-2978. (in Chinese))
    [18] 应宏伟, 郑贝贝, 谢新宇. 狭窄基坑平动模式刚性挡墙被动土压力分析[J]. 岩土力学, 2011, 32(12): 3755-3762. (YING Hong-wei, ZHENG Bei-bei, XIE Xin-yu. Study of passive earth pressures against translating rigid retaining walls in narrow excavations[J]. Rock and Soil Mechanics, 2011, 32(12): 3755-3762. (in Chinese))
    [19] WHITE D J, TAKE W A, BOLTON M D. Soil deformation measurements using particle image velocimetry (PIV) and photogrammetry[J]. Géotechnique, 2003, 53(7): 619-631.
    [20] NIEDOSTATKIEWICZ M, LESNIEWSKA D, TEJCHMAN J. Experimental analysis of shear zone patterns in cohesionless for earth pressure problems using particle image velocimetry[J]. Strain, 2011, 47(S2): 218-231.
    [21] LOUKIDIS D, SALGADO R. Active pressure on gravity walls supporting purely frictional soils[J]. Canadian Geotechnical Journal, 2012, 49(1): 78-97.
    [22] TALESNICK M. Measuring soil contact pressure on a solid boundary and quantifying soil arching[J]. Geotechnical Testing Journal, 2005, 28(2): 171-179.
    [23] ZHU B T, JARDINE R J, FORAY P. The use of miniature soil stress measuring cells in laboratory applications involving stress reversals[J]. Soils and Foundations, 2009, 49(5): 675-688.
计量
  • 文章访问数:  655
  • HTML全文浏览量:  3
  • PDF下载量:  666
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-09
  • 发布日期:  2016-06-24

目录

    /

    返回文章
    返回