• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑主应力偏转的土体浅埋隧道支护压力研究

汪丁建, 唐辉明, 李长冬, 李纯, 林成远

汪丁建, 唐辉明, 李长冬, 李纯, 林成远. 考虑主应力偏转的土体浅埋隧道支护压力研究[J]. 岩土工程学报, 2016, 38(5): 804-810. DOI: 10.11779/CJGE201605005
引用本文: 汪丁建, 唐辉明, 李长冬, 李纯, 林成远. 考虑主应力偏转的土体浅埋隧道支护压力研究[J]. 岩土工程学报, 2016, 38(5): 804-810. DOI: 10.11779/CJGE201605005
WANG Ding-jian, TANG Hui-ming, LI Chang-dong, LI Chun, LIN Cheng-yuan. Theoretical study on earth pressure on shallow tunnel considering principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 804-810. DOI: 10.11779/CJGE201605005
Citation: WANG Ding-jian, TANG Hui-ming, LI Chang-dong, LI Chun, LIN Cheng-yuan. Theoretical study on earth pressure on shallow tunnel considering principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 804-810. DOI: 10.11779/CJGE201605005

考虑主应力偏转的土体浅埋隧道支护压力研究  English Version

基金项目: 国家重点基础研究发展计划(“973”计划)项目(2011CB710606); 国家自然科学基金重点项目(41230637)
详细信息
    作者简介:

    汪丁建(1991- ),男,硕士研究生,主要从事工程地质与岩土工程方面的学习和研究工作。E-mail: djwang1991@foxmail.com。

  • 中图分类号: TU432

Theoretical study on earth pressure on shallow tunnel considering principal stress rotation

  • 摘要: 传统方法计算浅埋隧道支护压力时,未考虑上覆土体主应力偏转过程,与实际情况不符且计算结果不准确。为真实分析和计算浅埋隧道支护压力,以砂土为研究对象,首先概括浅埋隧道围岩破坏模式,在此基础上分析隧道上覆土体主应力偏转过程和应力状态,得到水平微分土层平均竖向压力与侧向压力和层间平均剪切力的定量关系,进而建立水平微分土层受力平衡方程求解上覆土体竖向压力。最后以隧道侧面滑移土体为对象,通过受力平衡方程求解获得支护压力表达式。新方法考虑了上覆土体主应力真实偏转过程,较传统方法更符合实际,研究结果表明:距离隧道顶部中心线越远,水平正应力与大主应力比值越小;随着土体内摩擦角的增大,竖直正应力与大主应力比值呈现先减小后增大的规律。与模型试验结果对比表明:当隧道埋深较浅时,新方法计算所得支护压力与模型试验结果高度吻合,优于不考虑主应力偏转方法计算结果和半经验性的Terzaghi方法计算结果,从而验证了该方法的有效性,可为浅埋隧道支护设计提供一定理论依据。
    Abstract: The traditional analytical methods for calculating the earth pressure on shallow tunnel are irrespective of the principal stress rotation, and do not reveal the real stress state of soils, and thus result in inaccurate values. A new quantitative method is proposed to acquire the earth pressure on shallow tunnel in sandy soil considering the principal stress rotation. The rotation process and the stress state are firstly analyzed based on the generalized collapse mode for surrounding soil. To obtain the vertical pressure on overlying soil, the equilibrium equation for the horizontal differential layer is established, considering the corresponding relationship among the lateral interlaminar stress, average interlaminar stress and average vertical stress. Eventually the earth pressure is derived by the equilibrium equation for the lateral soils of tunnel. The results show that the ratio of vertical to major principal stress decreases with the increase of the distance to center line, and it presents a decreasing-to-increasing trend with the increase of the internal friction angle. The values of earth pressure calculated by the proposed method fit well with the experimental results when the tunnel is shallow. The new method is even superior to the method irrespective of the principal stress rotation and Terzaghi’s semi-empirical method. The accuracy of the proposed method is validated. It may provide a theoretical basis for the design of shallow tunnel.
  • [1] 孙 钧, 侯学渊. 上海地区圆形隧道设计的理论和实践[J]. 土木工程学报, 1984, 17(3): 35-46. (SUN Jun, HOU Xue-yuan. Design theory and practice of circular tunnels in Shanghai area[J]. China Civil Engineering Journal, 1984, 17(3): 35-46. (in Chinese))
    [2] 郑颖人, 邱陈瑜, 张 红, 等. 关于土体隧洞围岩稳定性分析方法的探索[J]. 岩石力学与工程学报, 2008, 27(10): 254-260. (ZHENG Ying-ren, QIU Chen-yu, ZHANG Hong, et al. Exploration of stability analysis methods of surrounding rocks in soil tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(10): 254-260. (in Chinese))
    [3] 朱合华, 黄 锋, 徐前卫. 变埋深下软弱破碎隧道围岩渐进性破坏试验与数值模拟[J]. 岩石力学与工程学报, 2010, 29(6): 1113-1122. (ZHU He-hua, HUANG Feng, XU Qian-wei. Model test and numerical simulation for progressive failure of weak and fractured tunnel surrounding rock under different overburden depths[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1113-1122. (in Chinese))
    [4] ATKINSON J H, POTTS D M. Stability of a shallow circular tunnel in cohesionless soil[J]. Géotechnique, 1977, 27(2): 203-215.
    [5] DAVIS E H, GUNN M J, MAIR R J, et al. The stability of shallow tunnels and underground openings in cohesive material[J]. Géotechnique, 1980, 30(4): 397-416.
    [6] YAMAMOTO K, LYAMIN A V, WILSON D W, et al. Stability of a circular tunnel in cohesive-frictional soil subjected to surcharge loading[J]. Computers and Geotechnics, 2011, 38(4): 504-514.
    [7] 杨 峰, 阳军生. 浅埋隧道围岩压力确定的极限分析方法[J]. 工程力学, 2008, 25(7): 179-184. (YANG Feng, YANG Jun-sheng. Limit analysis method for determination of earth pressure on shallow tunnel[J]. Engineering Mechanics, 2008, 25(7): 179-184. (in Chinese))
    [8] YANG X, YANG Z, LI Y, et al. Upper bound solution for supporting pressure acting on shallow tunnel based on modified tangential technique[J]. Journal of Central South University, 2013, 20: 3676-3682.
    [9] 程小虎. 密实砂土及硬黏土中圆形隧道的竖向支护压力[J]. 岩石力学与工程学报, 2014, 33(4): 857-864. (CHENG Xiao-hu. Earth pressure on circular tunnel in dense sand and hard clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(4): 857-864. (in Chinese))
    [10] 谢家烋. 浅埋隧道的地层压力[J].土木工程学报, 1964, 10(6): 58-70. (XIE Jia-xiu. Earth pressure on shallow burial tunnel[J]. China Civil Engineering Journal, 1964, 10(6): 58-70. (in Chinese))
    [11] TERZAGHI K. Theoretical soil mechanics[M]. New York: John Wiley and Sons, 1943: 37-42.
    [12] LEE C J, CHIANG K H, KUO C M. Ground movement and tunnel stability when tunneling in sandy ground[J]. Journal of the Chines Institute of Engineers, 2004, 27(7): 1021-1032.
    [13] 陈若曦, 朱 斌, 陈云敏, 等. 基于主应力轴旋转理论的修正Terzaghi 松动土压力[J]. 岩土力学, 2010, 31(5): 1402-1406. (CHEN Ruo-xi, ZHU Bin, CHEN Yun-min. Modified Terzaghi looseningearth pressure based on theory of main stress axes rotation[J]. Rock and Soil Mechanics, 2010, 31(5): 1402-1406. (in Chinese))
    [14] GB50157–2013 地铁设计规范[S]. 2013. (GB50157–2013 Code for design of metro[S]. 2013. (in Chinese))
    [15] TB10003–2005, J449–2005 铁路隧道设计规范[S]. 2005. (TB10003–2005, J449–2005 Code for design on tunnel of railway[S]. 2005. (in Chinese))
    [16] PAIK K H, SALGADO R. Estimation of active earth pressure against rigid retaining walls considering arching effects[J]. Géotechnique, 2003, 53(7): 643-653.
    [17] 应宏伟, 蒋 波, 谢康和. 考虑土拱效应的挡土墙主动土压力分布[J]. 岩土工程学报, 2007, 29(5): 717-722. (YING Hong-wei, JIANG Bo, XIE Kang-he. Distribution of active earth pressure against retaining walls considering arching effects[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 717-722. (in Chinese))
    [18] 涂兵雄, 贾金青. 考虑土拱效应的黏性填土挡土墙主动土压力研究[J]. 岩石力学与工程学报, 2012, 31(5): 1064-1070. (TU Bing-xiong, JIA Jin-qing. Research on active earth pressure behind rigid retaining wall from clayey backfill considering soil arching effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(5): 1064-1070. (in Chinese))
    [19] 蔺 港, 孔令刚, 詹良通, 等. 基于太沙基土拱效应考虑基质吸力影响的松动土压力计算模型[J]. 岩土力学, 2015, 36(7): 2095-2104. (LIN Gang, KONG Ling-gang, ZHAN Liang-tong, et al[J]. Rock and Soil Mechanics, 2015, 36(7): 2095-2104. (in Chinese))
    [20] 周小文, 濮家骝, 包承纲. 隧洞拱冠砂土位移与破坏的离心模型试验研究[J]. 岩土力学, 1999, 20(2): 32-36. (ZHOU Xiao-wen, PU Jia-liu, BAO Cheng-gang. A study of the movement and failure characteristics of sand mass above the crown of a tunnel[J]. Rock and Soil Mechanics, 1999, 20(2): 32-36. (in Chinese))
    [21] 王明年, 郭 军, 罗禄森, 等. 高速铁路大断面黄土隧道深浅埋分界深度研究[J]. 岩土力学, 2010, 31(4): 1157-1162. (WANG Ming-nian, GUO Jun, LUO Lu-sen, et al. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. Rock and Soil Mechanics, 2010, 31(4): 1157-1162. (in Chinese))
    [22] 林培源. 隧道侧向压力问题的探讨[J]. 土木工程学报, 1982, 15(1): 54-62. (LIN Pei-yuan. On the lateral pressure of tunnel linings[J]. China Civil Engineering Journal, 1982, 15(1): 54-62. (in Chinese))
    [23] 侯学渊. 隧道设计模型、理论与试验[J]. 岩土工程学报, 1984, 6(3): 35-43. (HOU Xue-yuan. Design model, theory and test of tunnel[J]. Chinese Journal of Geotechnical Engineering, 1984, 6(3): 35-43. (in Chinese))
  • 期刊类型引用(7)

    1. 向成兵. 基于数值模拟的碾压混凝土重力坝坝体开裂原因研究. 水利科技与经济. 2025(01): 64-70 . 百度学术
    2. 张春顺,林正鸿,杨典森,陈嘉瑞. 考虑初始级配影响的粗粒土非线性弹性模型研究. 岩土力学. 2025(03): 750-760 . 百度学术
    3. 蔡新合,陈子玉,李国英. 考虑颗粒破碎能耗的堆石料剪胀方程及其应用. 水利水运工程学报. 2024(03): 127-135 . 百度学术
    4. 庞元恩,石国栋,段煜,姚敏,吉浩泽,罗鸣,李茂彪,李旭. 基于搜索分析深度学习网络(SaNet)的粗粒土级配识别. 岩土工程学报. 2024(09): 1984-1993 . 本站查看
    5. 卢斌,郑雪玉,吴修锋,谢兴华,李艳伟,王照英. 特高堆石坝砾石土心墙非均质缺陷对渗流场影响分析. 水电与抽水蓄能. 2023(03): 22-25+39 . 百度学术
    6. 熊治茗,杜俊,杨志全,沈兴刚. 筑坝堆石料三轴剪切特性及变形破坏试验研究. 水利与建筑工程学报. 2023(06): 107-113 . 百度学术
    7. 王明昌. 高砾石土心墙堆石坝过渡料爆破直采技术分析. 新型工业化. 2022(11): 132-135 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  514
  • HTML全文浏览量:  7
  • PDF下载量:  378
  • 被引次数: 11
出版历程
  • 收稿日期:  2015-07-01
  • 发布日期:  2016-05-24

目录

    /

    返回文章
    返回