• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

天津滨海吹填泥浆的自重沉降固结特性研究

张先伟, 杨爱武, 孔令伟, 周奇, 王 韬

张先伟, 杨爱武, 孔令伟, 周奇, 王 韬. 天津滨海吹填泥浆的自重沉降固结特性研究[J]. 岩土工程学报, 2016, 38(5): 769-776. DOI: 10.11779/CJGE201605001
引用本文: 张先伟, 杨爱武, 孔令伟, 周奇, 王 韬. 天津滨海吹填泥浆的自重沉降固结特性研究[J]. 岩土工程学报, 2016, 38(5): 769-776. DOI: 10.11779/CJGE201605001
ZHANG Xian-wei, YANG Ai-wu, KONG Ling-wei, ZHOU Qi, WANG Tao. Self-weight sedimentation and consolidation characteristics of hydraulic-dredged slurry in Tianjin Binhai District[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 769-776. DOI: 10.11779/CJGE201605001
Citation: ZHANG Xian-wei, YANG Ai-wu, KONG Ling-wei, ZHOU Qi, WANG Tao. Self-weight sedimentation and consolidation characteristics of hydraulic-dredged slurry in Tianjin Binhai District[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 769-776. DOI: 10.11779/CJGE201605001

天津滨海吹填泥浆的自重沉降固结特性研究  English Version

基金项目: 国家自然科学基金项目(41102200; 41372291); 天津市软
详细信息
    作者简介:

    张先伟 (1982-),男,黑龙江龙江人,博士,助理研究员,从事特殊土的力学特性研究。E-mail: xwzhang@whrsm.ac.cn。

  • 中图分类号: TU43

Self-weight sedimentation and consolidation characteristics of hydraulic-dredged slurry in Tianjin Binhai District

  • 摘要: 以天津滨海新区吹填泥浆为研究对象,对初始含水率w0=200%~2000%的泥浆开展长达100 d的自然沉降模型试验,研究吹填泥浆的自重沉降固结规律与形成土的微观结构特性,据此提出吹填工程设计的控制指标,为吹填工程的设计与施工提供可靠的技术支撑。结果表明,天津吹填泥浆的沉降类型主要是沉积沉降和固结沉降,沉积沉降过程分为絮凝阶段、阻碍沉降阶段、自重固结阶段。含水率临界值(或土的形成含水率)w0*=400%,且w0*与液限wL具有较好的线性关系。初始含水率w0≤w0*,发生固结沉降,沉降量可以用一维固结理论计算;w0>w0*,发生沉积沉降,沉降量可以用沉积规律计算。土的形成孔隙比e0*=10.92;沉降稳定时间Tc可用Tc=159(w0/ wL)-1计算;稳定孔隙比ec可由分段公式计算,ec=0.08+5.4(e0≥ 13.65),ec=0.4+1.03(e0< 13.65);絮凝屈服应力Ps=0.3 kPa,界限孔隙比es=6.4。研究还表明,泥浆沉降过程其实是絮凝屈服应力与有效应力相互影响的过程,进而产生不同的沉降特征;吹填形成土在平行于沉降方向为絮凝结构,而垂直沉降方向呈堆叠结构。
    Abstract: The model tests on hydraulic-dredged slurry with initial moisture content w0 of 200%~2000% in Tianjin Binhai District after sedimentation of 100 days are performed to investigate the self-weight sedimentation and consolidation characteristics. The relevant indices for the hydraulic fill are suggested so as to provide reliable theoretical support for dredger filling projects at the design and construction stages. The results show that the settling of the hydraulic-dredged slurry in Tianjin includes two types, deposition settling and consolidation settling, respectively. The former undergoes flocculation, hindering settling and consolidation. The critical moisture content w0* is 400%, and there is a linear relationship between w0* and the liquid limit. When w0w0*, the consolidation settling occurs, and the settlement can be calculated by using the one-dimensional consolidation theory. When w0>w0*, the deposition settling occurs, and the settlement can be calculated by using the sedimentation rule. The void ratio of soil formation e0* is 10.92. The time of sedimentation stability can be calculated using Tc=159(w0/ wL)-1. The void ratio of sedimentation stability can be calculated by the piecewise formulae ec=0.08+5.4(e0≥13.65)and ec=0.4+1.03(e0<13.65). The flocculation yield stress Ps is 0.3 kPa and the boundary void ratio es is 6.4. The self-weight sedimentation and consolidation is the process that the flocculation yield stress and the effective stress influence each other, so that different settlement characteristics are aroused. The micro-structure of dredged mud in parallel direction to sedimentation is flocculation structure, and that in vertical direction to sedimentation is a stacked one.
  • [1] 杜东菊, 杨爱武, 刘 举, 等. 天津滨海吹填土[M]. 北京: 科学出版社, 2010. (DU Dong-ju, YANG Ai-wu, LIU Ju, et al. The dredger fill of Tianjin Binhai area[M]. Beijing: Science Press, 2010. (in Chinese))
    [2] 杨爱武, 孔令伟, 张先伟. 吹填软土蠕变过程中颗粒与孔隙演化特征分析[J]. 岩土力学, 2014, 35(6): 1634-1640. (YANG Ai-wu, KONG Ling-wei, ZHANG Xian-wei. Analysis of evolution of particles and pores in creep process of dredger fill soft soil[J]. Rock and Soil Mechanics, 2014, 35(6): 1634-1640. (in Chinese))
    [3] 杨秀娟, 贾永刚. 黄河口入海泥沙沉积固结过程长期现场观测研究[J]. 岩土工程学报, 2013, 35(4): 671-678. (YANG Xiu-juan, JIA Yong-gang. Long-term field observation of sediment consolidation process in Yellow River Delta, China[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 671-678. (in Chinese))
    [4] XU G Z, GAO Y F, HONG Z S, et al. Sedimentation behavior of four dredged slurries in China[J]. Marine Georesources and Geotechnology, 2012, 30(2): 143-156.
    [5] IMAI G. Settling behavior of clay suspension[J]. Soils and Foundations, 1980, 20(2): 61-77.
    [6] IMAI G. Experimental studies on sedimentation mechanism and sediment formation of clay materials[J]. Soils and Foundations, 1981, 21(1): 7-20.
    [7] SRIDHARAN A, PRAKASH K. Self weight consolidation: compressibility behavior of segregated and homogeneous finegrained sediments[J]. Marine Georesources and Géotechnology, 2003, 21(2): 73-80.
    [8] 张 楠, 朱 伟, 王 亮, 等. 吹填泥浆中土颗粒沉降-固结规律研究[J]. 岩土力学, 2013, 34(6): 1681-1685. (ZHANG Nan, ZHU Wei, WANG Liang, et al. Study of sedimentation and consolidation of soil particles in dredged slurry[J]. Rock and Soil Mechanics, 34(6): 1681-1685. (in Chinese))
    [9] 张先伟, 孔令伟, 王 静. 针对黏性土胶质联结特征的SEM-EDS试验研究[J]. 岩土力学, 2013, 34(增刊2): 195-203. (ZHANG Xian-wei, KONG Ling-wei, WANG Jing. Experimental study of SEM-EDS for cementation bond characteristics of Zhanjiang clay[J]. Rock and Soil Mechanics, 2013, 34(S2):195-203. (in Chinese))
    [10] SL 237—1999土工试验规程[S]. 1999. (SL 237—1999 Standard for soil test method[S]. 1999. (in Chinese))
    [11] IMAI G, TSURUYA K, YANO K. A treatment of salinity in water content measurements of very soft dredged clays[J]. Soils and Foundations, 1979, 19(3): 84-89.
    [12] 徐桂中, 吉 锋, 翁佳兴. 高含水率吹填淤泥自然沉降规律[J]. 土木工程与管理学报, 2012, 29(3): 22-27. (XU Gui-zhong, JI Feng, WENG Jia-xing. Sedimentation behavior of dredged slurry at high water contents[J]. Journal of Civil Engineering and Management, 2012, 29(3): 22-27. (in Chinese))
    [13] TOORMAN E A. Sedimentation and self-weight consolidation: general unifying theory[J]. Géotechnique, 1996, 46(1): 103-113.
    [14] TAN T S, YONG K Y, LEONG E C,et al. Sedimentation of clayey slurry[J]. Journal of Geotechnical Engineering, ASCE, 1990, 116(6): 885-898.
    [15] CARRUER III W D, BROMWELL L G, SOMOGYI F. Design capacity of slurried mineral waste ponds[J]. Journal of Geotechnical Engineering, 1983, 109(5): 699-716.
    [16] MONTE J L, KRIZEK R J. One-dimensional mathematical model for large-strain consolidation[J]. Géotechnique, 1976, 26(3): 495-510.
    [17] ZHANG X W, KONG L W, LI J. An investigation of alternations in Zhanjiang clay properties due to atmospheric oxidation[J]. Géotechnique, 2014, 64(12): 1003-1009.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-08
  • 发布日期:  2016-05-24

目录

    /

    返回文章
    返回