• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

降雨条件下折线型滑面的大型滑坡稳定性离心模型试验

潘皇宋, 李天斌, 仵拨云, 任 洋, 宋 涛

潘皇宋, 李天斌, 仵拨云, 任 洋, 宋 涛. 降雨条件下折线型滑面的大型滑坡稳定性离心模型试验[J]. 岩土工程学报, 2016, 38(4): 696-704. DOI: 10.11779/CJGE201604014
引用本文: 潘皇宋, 李天斌, 仵拨云, 任 洋, 宋 涛. 降雨条件下折线型滑面的大型滑坡稳定性离心模型试验[J]. 岩土工程学报, 2016, 38(4): 696-704. DOI: 10.11779/CJGE201604014
PAN Huang-song, LI Tian-bin, WU Bo-yun, REN Yang, SONG Tao. Centrifugal model tests on large-scale landslide with broken-line slip surface under rainfall[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 696-704. DOI: 10.11779/CJGE201604014
Citation: PAN Huang-song, LI Tian-bin, WU Bo-yun, REN Yang, SONG Tao. Centrifugal model tests on large-scale landslide with broken-line slip surface under rainfall[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 696-704. DOI: 10.11779/CJGE201604014

降雨条件下折线型滑面的大型滑坡稳定性离心模型试验  English Version

基金项目: 地质灾害防治与地质环境保护国家重点实验室团队重点课
详细信息
    作者简介:

    潘皇宋(1988- ),男,贵州黔东南人,硕士研究生,从事地质灾害与岩体工程研究。E-mail: gz_phs@163.com。

  • 中图分类号: TU41

Centrifugal model tests on large-scale landslide with broken-line slip surface under rainfall

  • 摘要: 以大型土工离心机为技术依托,采用离心模型试验,研究开挖和降雨对滑面为折线型的大型滑坡变形破坏和稳定性的影响。试验中采用变形标志点、颗粒图像测速技术(PIV)和可承受高离心力的传感器,在获取坡体土压力、孔隙水压力和位移矢量场的基础上,综合分析开挖和降雨诱发大型滑坡变形破坏的特征及失稳模式。试验结果表明,在滑面形态变化大的部位开挖卸荷容易引起折线型滑面大型滑坡的局部复活; 受开挖卸荷和降雨影响,滑坡后缘的开挖斜坡位移最大且最先失稳; 受降雨的影响,滑坡前部位移较大,坡体表面变形破坏严重,开挖斜坡下部发育一条次级滑裂面,滑坡后缘和开挖平台前沿滑面坡度突变处各形成一条潜在主滑裂面。离心模型试验显示折线型滑面的滑坡受开挖和降雨的影响可表现出分级分块滑动的变形破坏特征。稳定性分析表明,降雨使折线型滑面的大型滑坡不同滑段稳定性系数不同程度降低,滑坡后缘、开挖斜坡和滑坡前缘处于不稳定状态。
    Abstract: Based on the technical support of the large geotechnical centrifuge, centrifugal model tests are performed to study the effects of rainfall and excavation on the deformation and stability of large-scale landslide with broken-line slip surface. The marking points, the particle image velocimetry technology and the sensors which can withstand high centrifugal force are applied during the tests. The earth pressure, pore water pressure and displacement vector field are obtained to make a comprehensive analysis on the characteristics of deformation and failure and the instability modes of large-scale landslide induced by rainfall. The test results show: (1) The unloading by excavation in the slope with large change of slip shape is easy to cause the local landslide in large-scale landslide with broken-line slip; (2) Under the rainfall and excavation, failure in the excavation slope is the earliest, and it has the maximum displacement; (3) Affected by the rainfall, large displacement occurs at the toe of slope and serious failure occurs on surface. A secondary slip surface occurs under the excavation slope, and two main slip surfaces located on the head of the slope and the down edge of the excavation area with change of the angle of the slip surface. The centrifugal mode tests indicate that the characteristics of deformation and failures of large-scale landslide with broken-line slip surface exhibit slide in different grades and blocks under the influence of excavation and rainfall. The stability analysis shows that the rainfall reduces the factor of safety of large-scale landslide, and the head of slope, excavation slope and slope toe are instable.
  • [1] PAOLA Gattinoni, LAURA ScesiI, LUCA ArieniI, et al. The February 2010 large landslide at Maierato, ViboValentia, Southern Italy[J]. Landslides, 2012(9): 255-261.
    [2] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454. (HUANG Run-qiu. Large-scale landslides and their sliding mechanisms in china since 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454. (in Chinese))
    [3] 田晓丽. 预加固高填方斜坡滑动失稳机制的离心模型试验研究[D]. 成都: 成都理工大学, 2011. (TIAN Xiao-li. The centrifuge model test for the sliding mechanism of pre-reinforced high fill slope[D]. Chengdu: Chengdu University of Technology, 2011. (in Chinese))
    [4] LING H, HOE I, LING M. Centrifuge model simulations of rainfall-induced slope instability[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2012, 138: 1151-1157.
    [5] LING H, LIING H L, LI L, et al. Centrifuge modeling of slope failures induced by rainfall[C]// Proc 7th Int Conf on Physical Modelling in Geotechnics, SPRINGMAN S, LAUE I, SEWARD L, eds. London, 2010: 1131-1136.
    [6] 程永辉, 程展林, 张元斌. 降雨条件下膨胀土边坡失稳机理的离心模型试验研究[J]. 岩土工程学报, 2011, 33(增刊1): 409-414. (CHENG Yong-hui, CHENG Zhan-lin, ZHANG Yun-bin. Centrifugal model tests on expansive soil slope under rainfall[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 409-414. (in Chinese))
    [7] ZHANG Ga, QIAN Ji-yun, WANG Rui, et al. Centrifuge model test study of rainfall-induced deformation of cohesive soil slopes[J]. Soil and Foundations, 2001, 51(2): 297-305.
    [8] 钱纪芸, 张 嘎, 张建民. 降雨条件下土坡变形机制的离心模型试验研究[J]. 岩土力学, 2011, 32(2): 398-402. (QIAN Ji-yun, ZHANG Ga, ZHANG Jian-min. Centrifuge model tests for deformation mechanism of soil slope during rainfall[J]. Rock and Soil Mechanics, 2011, 32(2): 398-402. (in Chinese))
    [9] SCHULZA W H, GALLOWAY S L, HIGGINS J D. Evidence for earthquake triggering of large landslides in coastal Oregon, USA[J]. Geomorphology, 2012(141/142): 88-98.
    [10] DORTCH Jason M, OWEN Lewis A, HANEBERG William C, et al. Nature and timing of large landslides in the Himalayaand Transhimalaya of northern India[J]. Quaternary Science Reviews, 2009(28): 1037-1054.
    [11] 张永双, 郭长宝, 周能娟. 金沙江支流冲江河巨型滑坡及其局部复活机理研究[J]. 岩土工程学报, 2013, 35(3): 445-453. (ZHANG Yong-shuang, GUO Chang-bao, ZHOU Neng-juan. Characteristics of Chongjianghe landslide at a branch of Jinsha River and its local reactivation mechanism[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 445-453. (in Chinese))
    [12] 李小林, 郭小花, 李万花. 黄河上游龙羊峡-刘家峡河段巨型滑坡形成机理分析[J]. 工程地质学报, 2011, 19(4): 516-529. (LI Xiao-lin, GUO Xiao-hua, LI Fan-hua. Mechanism of giant landslides from Longyangxia valley to Liujiaxia valley along upper Yellow River[J]. Journal of Engineering Geology, 2011, 19(4): 516-529. (in Chinese))
    [13] 冯文凯, 何 川, 石豫川, 等. 复杂巨型滑坡形成机制三维离散元模拟分析[J]. 岩土力学, 2009, 30(4): 1122-1126. (FENG Wen-kai, HE Chuan, SHI Yu-chuan, etc. Simulation analysis of formation mechanism of some complex and giant landslides using three-dimensional discrete elements[J]. Rock and Soil Mechanics, 2009, 30(4): 1122-1126. (in Chinese))
    [14] WANG Fa-wu, OKUNO T, MATSUMOTO T. Deformation characteristics and influential factors for the giant Jinnosuke-dani landslide in the Haku-san Mountain area, Japan[J]. Landslides, 2007(4): 19-31.
    [15] 黄润秋, 裴向军, 李天斌. 汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J]. 工程地质学报, 2008, 16(6): 730-741. (HUANG Run-qiu, PEI Xiang-jun, LI Tian-bin. Basic characteristics and formation mechanism of the largest scale landslide at Daguangbao occurred during the Wenchuan earthquake[J]. Journal of Engineering Geology, 2008, 16(6): 730-741. (in Chinese))
    [16] CASTELLI M, CLAUDIO S, CHRISTOPHE B, et al. Mechanics and velocity of large landslides[J]. Engineering Geology, 2009(109): 1-4.
    [17] QUINN P E, DIEDERICHS M S, ROWE R K, et al. A new model for large landslides in sensitive clayusing a fracture mechanics approach[J]. Canadian Geotechnical Journal, 2011(48): 1151-1162.
    [18] QUINN P E, HUTCHINSON D J, DIEDERICHS M S, et al. Characteristics of large landslides in sensitive clayin relation to susceptibility, hazard, and risk[J]. Canadian Geotechnical Journal, 2011(48): 1212-1232 .
    [19] 孙德永. 南昆铁路八渡滑坡工程整治[M]. 北京: 中国铁道出版社, 2000. (SU De-yong. Protect regulation of Badu landslide in Nan-Kun Railway[M]. Beijing: Chinese Railway Press, 2000. (in Chinese))
    [20] XUE De-min, LI Tian-bin, WEI Yong-xing, et al. Mechanism of reactivated Badu landslide in the Badu Mountain area, Southwest China[J]. Environmental Earth Sciences, 2015, 73(8): 4305-4312.
    [21] 张 敏, 吴宏伟. 颗粒图像测速技术在离心试验变形分析中的应用[J]. 岩石力学与工程学报, 2010, 29(增刊2): 3858-3864. (ZHANG Min, WU Hong-wei. Application of particle image velocimetry to deformation analysis in centrifugal tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 3858-3864. (in Chinese))
    [22] LING H I, WU M H, LESHCHINSKY D, et al. Centrifuge modeling of slope instability[J]. J Geotechnical Geoenvironmental Engineering, 2009, 135(6): 758-767.
    《岩土工程学报》征订启事
    23 《岩土工程学报》创办于1979年,是我国水利、土木、力学、建筑、水电、振动等六个全国性学会联合主办的学术性科技期刊。由南京水利科学研究院承办,国内外公开发行。主要刊登土力学、岩石力学领域中能代表当今先进理论和实践水平的科学研究和工程实践成果等。报道新理论、新技术、新仪器、新材料的研究和应用。欢迎国家自然科学基金项目及其他重要项目的研究成果向本刊投稿,倡导和鼓励有实践经验的作者撰稿,并优先刊用这些稿件。主要栏目有黄文熙讲座、综述、论文、短文、工程实录、焦点论坛、讨论和简讯等。
    24 本刊被《中文核心期刊要目总览》连续多年确认为核心期刊,并在建筑类核心期刊中位于前列;本刊被科技部“中国科技论文统计源期刊”(中国科技核心期刊)及“中国科技论文与引文数据库”收录;本刊被中国科学院“中国科学引文数据库”收录;本刊被“中国知网”全文收录及“中国学术期刊综合评价数据库”收录;本刊被“工程索引Ei Compendex数据库”和“日本科学技术振兴机构数据库JST”等国际数据库收录。本刊网址(www.cgejournal.com)全文发布本刊所有刊载文章。
    25 本刊读者对象为土木建筑、水利电力、交通运输、矿山冶金、工程地质等领域中从事岩土工程及相关专业的科研人员、设计人员、施工人员、监理人员和大专院校师生。
    26 本刊为月刊,A4开,双栏排版,192页,每月中旬出版,每期定价25元,全年300元。
    27 本刊国际标准刊号ISSN 1000-4548,国内统一刊号CN 32-1124/TU,国内发行代号28-62,国外发行代号MO 0520。
    28 欢迎广大读者在全国各地邮局订购,也可在编辑部订购(不另收邮费)。编辑部订购地址:南京虎踞关34号《岩土工程学报》编辑部;邮编:210024;联系电话:025-85829534,85829543,85829553,85829556;传真:025-85829555;E-mail: ge@nhri.cn。
    29 (本刊编辑部)
  • 期刊类型引用(10)

    1. 张盛行,汤雷,朱春光,石蓝星,明攀. 瞬变电磁探测土质堤坝渗漏病害的正演模拟与工程应用. 水利水电技术(中英文). 2025(S1): 392-397 . 百度学术
    2. 施晓萍,周柏兵,郭庆鑫,李家群. 机载激光雷达在堤防隐患巡查试验中的应用. 水利发展研究. 2024(01): 86-93 . 百度学术
    3. 黄曙光. 英德庄洲防洪堤水毁应急抢险修复策略. 云南水力发电. 2024(03): 99-102 . 百度学术
    4. 涂建伟,蒋德成,崔家仲,何孟芸,贾刚. 面向岸堤坍塌全过程的应急防护措施与装置. 人民长江. 2024(04): 200-206 . 百度学术
    5. 薛凯喜,李明吉,曹凯,胡艳香. 鄱阳湖圩堤管涌险情分析与防治措施. 河北工程大学学报(自然科学版). 2024(02): 95-104 . 百度学术
    6. 高玉峰,王玉杰,张飞,姬建,陈亮,倪钧钧,张卫杰,宋健,杨尚川. 边坡工程与堤坝工程研究进展. 土木工程学报. 2024(08): 97-118 . 百度学术
    7. 陈昱行,高至飞,胡朝鹏,宋国策. 基于无人机多模态数据的铁路防洪隐患排查系统研发. 铁道勘察. 2024(05): 156-162 . 百度学术
    8. 蒋水华,陈颖霞,熊威,李彧玮,常志璐,李锦辉,李文欢. 堤防工程险情风险评估与管控研究进展. 人民珠江. 2024(11): 1-13 . 百度学术
    9. 刘阳,涂善波,李亚楠. 双线盾构隧道穿越影响下的黄河堤防沉降监测研究. 陕西水利. 2023(10): 135-138 . 百度学术
    10. 涂善波,刘阳. 基于多源监测技术的穿黄隧道堤防安全影响评价. 水科学与工程技术. 2023(05): 73-76 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 13
出版历程
  • 修回日期:  2015-03-12
  • 发布日期:  2016-04-24

目录

    /

    返回文章
    返回