• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

安宁河河谷及邛海地区土层场地对地震动的放大作用

李平, 薄景山, 李孝波, 肖瑞杰

李平, 薄景山, 李孝波, 肖瑞杰. 安宁河河谷及邛海地区土层场地对地震动的放大作用[J]. 岩土工程学报, 2016, 38(2): 362-369. DOI: 10.11779/CJGE201602022
引用本文: 李平, 薄景山, 李孝波, 肖瑞杰. 安宁河河谷及邛海地区土层场地对地震动的放大作用[J]. 岩土工程学报, 2016, 38(2): 362-369. DOI: 10.11779/CJGE201602022
LI Ping, BO Jing-shan, LI Xiao-bo, XIAO Rui-jie. Amplification effect of soil sites on ground motion in Anning River valley and Qionghai Lake area[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 362-369. DOI: 10.11779/CJGE201602022
Citation: LI Ping, BO Jing-shan, LI Xiao-bo, XIAO Rui-jie. Amplification effect of soil sites on ground motion in Anning River valley and Qionghai Lake area[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 362-369. DOI: 10.11779/CJGE201602022

安宁河河谷及邛海地区土层场地对地震动的放大作用  English Version

基金项目: 中国地震局地震科技星火计划项目(XH15067Y); 中央高; 校基本科研业务专项资金项目(ZY20140206)
详细信息
    作者简介:

    李 平(1981- ),男,副教授,博士,主要从事场地效应及岩土工程抗震方面研究。E-mail: chinaliping1981@126.com。

Amplification effect of soil sites on ground motion in Anning River valley and Qionghai Lake area

  • 摘要: 场地土层对地震动的影响研究一直是地震工程研究的主要问题之一。利用汶川地震中安宁河及邛海周边地区6个台站记录到的主震的加速度时程,采用传统谱比法研究了5个土层台站所在场地对地震动的放大作用,研究结果表明:①该区场地对地震动的放大作用与工程地质分区有着很好的相关性,不同的工程地质分区对地震动的放大效应不同,按放大作用大小排序,邛海湖滨平原亚区(Ⅲ3)>邛海洪泛平原亚区(Ⅲ2)>安宁河平原区(Ⅱ)>山麓坡洪积亚区(Ⅰ2)>中山基岩亚区(Ⅰ1)。②工程地质分区为山麓坡洪积亚区(Ⅰ2)的场地对地震动低频分量没有放大作用,但是对地震动高频成分放大作用显著。③工程地质分区为安宁河平原区(Ⅱ)的场地对地震动低频和高频都有放大效应,并且高频放大作用大于低频,并且3个分量放大作用在低频和高频表现不同,低频时地震动放大效应UD>NS>EW,高频时地震动放大效应EW>NS>UD。④工程地质分区为邛海洪泛平原亚区(Ⅲ2)的场地对地震动低频和高频放大作用都非常显著,并且放大系数最大值所在的频带都在1 Hz左右,且放大最大值相差不大。⑤对于工程地质分区为邛海湖滨平原亚区(Ⅲ3)的场地对地震动低频和高频放大作用都有放大效应,放大系数较大,且放大效应显著频段分布较宽。
    Abstract: Thet effect of site soil on ground motion is one of the main issues about earthquake engineering research. Based on the acceleration time histories recorded at 6 stations in Anning River and Qionghai Lake area, the amplification effect of 5 soil stations is studied by using the traditional spectral ratio method. The results are as follows: (1) There is good correlation between the amplification on ground motion in these sites and the geological zone, and the amplification effect on ground motion is different in different geological zones. According to the amplification of the size, the descending sequence is Qionghai Lake Plain subregion (Ⅲ3), Qionghai Lake and flood plain subregion (Ⅲ2), Anning River Plain area (Ⅱ), piedmont alluvial subregion (Ⅰ2) and Zhongshan bedrock subregion (Ⅰ1). (2) The piedmont alluvial subregion has no amplification effect on the low-frequency component of ground motion but significant amplification effect on the high-frequency one. (3) The Anning River Plain area has amplification effect on both the low-and high-frequency components of ground motion, and the amplification effect on the high frequency is stronger than that on the low frequency. The amplification effects of three components are different, that is, the descending amplification in the low frequency is UD, NS and EW, and that in the high frequency is EW, NS and UD. (4) The Qionghai Lake flood plain subregion has significant amplification effect on both the low-and high-frequency components of ground motion, and the maximum factor of amplification is about 1 Hz, with small differences among the maximum factors. (5) The Qionghai Lake Plain subregion has amplification effect on both the low-and high-frequency components of ground motion, the amplification factor is large, and the distribution band of significant amplification is wide.
  • [1] 肖文海. 大型河谷场地地震动特征研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2008. (XIAO Wen-hai. The research of the characteristics of the ground motion in large valley terrain[D]. Haerbin: Institute of Engineering Mechanics, China Earthquake Administration, 2008. (in Chinese))
    [2] 曲国胜, 黄建发, 李小军, 等. 南亚(巴基斯坦)地震灾害分布及成因分析[J]. 震灾防御技术, 2008, 3(1): 85-94. (QU Guo-sheng, HUANG Jian-fa, LI Xiao-jun, et al. The hazard assessment and analysis of Pakistan earthquake in 2005[J]. Technology for Earthquake Disaster Prevention, 2008, 3(1): 85-94. (in Chinese))
    [3] 李 平. 汶川特大地震汉源震害异常研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2013. (LI Ping. The research of seismic damage anomalies in Hanyuan during Wenchuan Great Earthquake[D]. Haerbin: Institute of Engineering Mechanics, China Earthquake Administration, 2013. (in Chinese))
    [4] 王 伟. 地震动的山体地形效应[D]. 哈尔滨: 中国地震局工程力学研究所, 2011. (WANG Wei. Effect of hill topography on ground Motion[D]. Haerbin: Institute of Engineering Mechanics, China Earthquake Administration, 2011. (in Chinese))
    [5] GAO Y F, ZHANG N, ZHANG D Y. Effects of topographic amplification Induced by a U-Shaped canyon on seismic Waves[J]. Bulletin of the Seismological Society of America , 2012, 102: 1748-1763.
    [6] ZHANG N, GAO Y F,CAI Y Q. Scattering of SH waves induced by a non-symmetrical V-shaped canyon[J]. Geophysical Journal International, 2012, 191: 243-256.
    [7] Corine Frischknecht and Jean-Jacques Wagner. Seismic soil effect in an embanked deep alpine valley: a numerical investigation of two-dimensional resonance[J]. Bulletin of the Seismological Society of America, 2004, 94(1): 171-186.
    [8] PAOLA Bordoni, FRANCESCO Del Monaco, GIULIANO Milana. The seismic response at high frequency in central l’aquila: a comparison between spectral ratios of 2D modeling and observations of the 2009 aftershocks[J]. Bulletin of the Seismological Society of America, 2014, 104(3): 1374-1388.
    [9] 金丹丹, 陈国兴, 董菲蕃. 多地貌单元复合场地非线性地震效应特征二维分析[J]. 岩土力学, 2014, 35(6): 1818-1825. (JIN Dan-dan, CHEN Guo-xing, DONG Fei-fan. 2D analysis of nonlinear seismic effect characteristics of muti-geomorphic composite site[J]. Rock and Soil Mechanics, 2014, 35(6): 1818-1825. (in Chinese))
    [10] CELEBI M. Topographical and geological amplification-case studies and engineering implications[J]. Structural Safety, 1991, 10: 199-217.
    [11] BONILLA L F, STEIDL J H, LINDLEY G T. Site amplification in the San Fernando Valley, California: Variability of site-effect estimation using the S-wave, Coda, and H/V methods[J]. Bulletin of the Seismological Society of America, 1997, 87(3): 710-730.
    [12] TSUDA K, KOKETSU K, HISADA Y. Inversion analysis of site response in the Kanto basin using data from a dense strong motion seismograph array[J]. Bulletin of the Seismological Society of America, 2010, 100(3): 1276-1287.
    [13] 王海云. 渭河盆地中土层场地对地震动的放大作用[J].地球物理学报, 2011, 54(1): 137-150. (WANG Hai-yun. Amplication effects of soil sites on ground motion in the Weihe basin[J]. Chinses Journal of Geophysics, 2011, 54(1): 137-150. (in Chinese))
    [14] 任叶飞, 温瑞智, 山中浩明, 等. 运用广义反演法研究汶川地震场地效应[J]. 土木工程学报, 2013, 46(增刊): 146-151. (REN Ye-fei, WEN Rui-zhi, HIROAKI Yamanaka, et al. Research on site effect of Wenchuan Earthquake by using generalized inversion technique[J]. China Civil Engineering Journal, 2013, 46(S0): 146-151. (in Chinese))
    [15] 吕悦军, 彭艳菊, 兰景岩, 等. 场地条件对地震动参数影响的关键问题[J]. 震灾防御技术, 2008, 3(2): 126-135. (LÜ Yue-jun, PENG Yan-ju, LAN Jing-yan, et al. Some key problems about site effects on seismic ground motion parameters[J]. Technology for Earthquake Disaster Prevention, 2008, 3(2): 126-135. (in Chinese))
    [16] 薄景山, 李秀领, 李山有. 场地条件对地震动影响研究的若干进展[J]. 世界地震工程, 2003, 19(2): 11-15. (BO Jing-shan, LI Xiu-ling, LI Shan-you. Some progress of study on the effect of site conditions on ground motion[J]. World Earthquake Engineering, 2003, 19(2): 11-15. (in Chinese))
    [17] 薄景山, 吴兆营, 翟庆生, 等. 三种土层结构反应谱平台值的统计分析[J]. 地震工程与工程震动, 2004, 24(2): 23-28. (BO Jing-shan, WU Zhao-ying, ZHAI Qing-sheng, et al. Statistical analysis on flat section values of response spectra in three kinds of soil layer constructions[J]. Earthquake Engineering and Engineering Vibration, 2004, 24(2): 23-28. (in Chinese))
    [18] GB5011—2010建筑抗震设计规范[S]. 2010. (GB5011—2010 Code for seismic design of buildings[S]. 2010. (in Chinese))
  • 期刊类型引用(15)

    1. 葛苗苗,朱才辉,盛岱超,PINEDA Jubert,李宁. 非饱和压实黄土渗气特性及细观渗气机制研究. 岩石力学与工程学报. 2025(01): 221-235 . 百度学术
    2. 胡静,金林廉,吕志豪,张家康,边学成. 基于考虑变形效应的土-水特征曲线求解非饱和地基动力响应. 岩土工程学报. 2025(02): 397-406 . 本站查看
    3. 周葆春,江星澐,马全国,单丽霞,王江伟,李颖,易先达,孔令伟. 低应力和湿化路径下膨胀土的力学行为与本构模拟. 岩土工程学报. 2025(04): 695-704 . 本站查看
    4. 李佳文,陈高明,田世龙,韩博文,冯怀平,杨志浩. 土体含水率对振动压实的影响及电阻率演化特征研究. 振动与冲击. 2025(07): 16-25 . 百度学术
    5. 吴炎,胡坤,姜马欢,李荟楠,彭哲. 两种气体作用下非饱和江边吹填砂三轴试验研究. 人民长江. 2024(02): 211-215+230 . 百度学术
    6. 赵中航,林昱利,郭浩天,刘全想,任淇淇. 温度及饱和度对粉质黏土变形特性的影响. 低温建筑技术. 2024(02): 119-123 . 百度学术
    7. 赵习武. 土工格室在库岸非饱和土边坡稳定性治理中的应用. 水利技术监督. 2024(06): 276-278+282 . 百度学术
    8. 张莹,刘忠,谢文博. 非饱和土地基的承载比试验分析. 工程与建设. 2024(02): 417-419 . 百度学术
    9. 尹义豪,钟小春,何子良,黄思远,何纯豪,高始军,张箭. 考虑压力、温度效应的黏性土黏附强度变化规律研究. 现代隧道技术. 2024(03): 175-183 . 百度学术
    10. 朱振慧,赵连军,张防修,黄李冰. 基于黏粒含量的黄河下游堤防土水特征曲线预测研究. 人民黄河. 2024(10): 55-61 . 百度学术
    11. 陈可,王琛,梁发云,汪中卫. 考虑水力滞后与变形耦合的非饱和土持水曲线模型. 岩土力学. 2024(12): 3694-3704+3716 . 百度学术
    12. 李纯,王煜斌,王刚. 层状土体变特性及变形计算方法研究进展. 水利与建筑工程学报. 2023(04): 1-9 . 百度学术
    13. 权国绍,刘鹏. 强降雨条件下高填路段路基滑坡稳定性数值优化分析. 粘接. 2023(11): 165-168 . 百度学术
    14. 周子宜. 鸡姆塘水库大坝除险加固渗流与坝坡稳定分析. 水利科学与寒区工程. 2023(11): 33-36 . 百度学术
    15. 上官云龙,李东鑫,王罡. 冻融循环对膨胀土力学特性的影响及本构描述. 吉林建筑大学学报. 2023(06): 33-38 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数:  360
  • HTML全文浏览量:  7
  • PDF下载量:  401
  • 被引次数: 26
出版历程
  • 收稿日期:  2015-03-16
  • 发布日期:  2016-02-24

目录

    /

    返回文章
    返回